精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥,四边形是矩形,平面平面, 中点.

Ⅰ)求证: 平面;

.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)连接交于点,根据三角形中位线性质得,再根据线面平行判定定理得结论,(2)根据面面垂直性质定理得平面,即得再根据得结论.

试题解析:解:Ⅰ)连接交于点,

, 为中位线,所以,

平面, 平面,

所以平面.

Ⅱ)因为四边形是矩形,

所以,

又因为平面平面,

平面平面,

平面,又因为

所以平面, 平面,

所以.

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若上单调递增,求实数的取值范围;

(3)当时,求证:对于任意的 ,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.若sin(A﹣B)+sinC= sinA.
(1)求角B的值;
(2)若b=2,求a2+c2的最大值,并求取得最大值时角A,C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 在椭圆 上,过椭圆C的右焦点F且垂直于椭圆长轴的弦长为3.
(1)求椭圆C的方程;
(2)若MN是过椭圆C的右焦点F的动弦(非长轴),点T为椭圆C的左顶点,记直线TM,TN的斜率分别为k1 , k2 . 问k1k2是否为定值?若为定值,请求出定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题中:

①命题“若x≥2且y≥3,则x+y≥5”为假命题.

②命题“若x2-4x+3=0,则x=3”的逆否命题为:“若x≠3,则x2-4x+3≠0”.

③“x>1”是“|x|>0”的充分不必要条件

④关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.

其中所有正确命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx﹣ax2+x有两个零点,则实数a的取值范围是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(4)=1,f′(x)f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)<1,的取值范围是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学100位学生在市统考中的理科综合分数,以 分组的频率分布直方图如图.

(1)求直方图中的值;

(2)求理科综合分数的众数和中位数;

(3)在理科综合分数为 的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在的学生中应抽取多少人?

查看答案和解析>>

同步练习册答案