精英家教网 > 高中数学 > 题目详情
如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=3MB,线段CE上是否存在一点N,使得MN平面DAE?若存在,求出CN的长;若不存在,说明理由.
(1)证明:∵AD⊥平面ABE,ADBC
∴BC⊥平面ABE,∴AE⊥BC
又∵BF⊥平面ACE,∴AE⊥BF
∵BC∩BF=B,
∴AE⊥平面BCE,
∵BE?平面BCE,∴AE⊥BE;
(2)存在CN=
1
4
CE,使得MN平面DAE.
在△ABE中过M点作MGAE交BE于G点,在△BEC中过G点作GNBC交EC于N点,连MN,
∵AM=3MB,∴CN=
1
4
CE
∵MGAE,MG?平面ADE,AE?平面ADE,∴MG平面ADE
同理可证,GN平面ADE,
∵MG∩GN=G,∴平面MGN平面ADE
又∵MN?平面MGN,∴MN平面ADE,
∵EB=BC=2,∴CE=2
2

∴CN=
2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱PD⊥底面ABCD,PD=BC,E是PC的中点,求证:PA平面EDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(y的的7•海南)如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=9的°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E为PC的中点.求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=2
2

(Ⅰ)求证:EF平面A1BC1
(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求证:AF平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:其中正确的结论的个数为(  )
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1-D1CA的体积为
1
3

④A1C⊥AB1,A1C⊥BC1
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面是边长为2的正方形,PA⊥底面ABCD,PA=2
2
,求直线PA与底面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为矩形,AD⊥平面ABEAE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,BD∩AC=G.
(1)求证:AE⊥平面BCE;
(2)求证:AE平面BFD;
(3)求四面体BCDF的体积.

查看答案和解析>>

同步练习册答案