精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过变换后得曲线.

(1)求的方程;

(2)若为曲线上两点, 为坐标原点,直线的斜率分别为,求直线被圆截得弦长的最大值及此时直线的方程.

【答案】(1)(2)直线被圆 截得弦长的最大值为

此时,直线的方程为

【解析】试题分析:(1)根据转移法求轨迹方程:将代入,化简可得(2)先根据斜率公式表示,再联立直线方程与椭圆方程,结合韦达定理可得,由垂径定理得圆心到直线的距离最小时,弦长最大,而,因此当时,弦长最大,可得此时直线的方程.

解:(Ⅰ)将代入

化简得

为曲线的方程.

(Ⅱ)设 ,直线与圆 的交点为

当直线轴时,

此时可求得

当直线轴不垂直时,设直线的方程为

联立

所以

此时

的圆心到直线的距离为

所以

所以当时, 最大,最大值为

综上,直线被圆 截得弦长的最大值为

此时,直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本题满分12分在平面直角坐标系xOy已知两点M满足设点M的轨迹为C半抛物线),设点

C的轨迹方程

设点T是曲线上一点曲线在点T处的切线与曲线C相交于点A和点BABD的面积的最大值及点T的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:

(Ⅰ)请根据所给五组数据,求出关于的线性回归方程

(Ⅱ)已知购买原材料的费用(元)与数量(袋)的关系为投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,直线的方程为,点是抛物线上到直线距离最小的点,点是抛物线上异于点的点,直线与直线交于点,过点轴平行的直线与抛物线交于点.

(1)求点的坐标;

(2)求证:直线恒过定点

(3)在(2)的条件下过轴做垂线,垂足为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(1)求该圆台母线的长;
(2)求该圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是(  )

A.
B.2π
C.
D.3π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,则三棱锥A﹣BCD外接球的半径为(  )

A.2
B.3
C.4
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A′B′C′,侧棱与底面垂直,且所有的棱长均为2,E为AA′的中点,F为AB的中点. (Ⅰ)求多面体ABCB′C′E的体积;
(Ⅱ)求异面直线C'E与CF所成角的余弦值.

查看答案和解析>>

同步练习册答案