精英家教网 > 高中数学 > 题目详情
9.已知平面直角坐标系中两定点为A(2,3),B(5,3),若动点M满足|AM|=2|BM|.
(1)求动点M的轨迹方程;
(2)若直线l:y=x-5与M的轨迹交于C,D两点,求CD的长度.

分析 (1)利用直接法,可求动点M的轨迹方程;
(2求出圆心到直线的距离,利用勾股定理,求CD的长度.

解答 解:(1)设M(x,y),则(x-2)2+(y-3)2=4(x-5)2+4(y-3)2,即(x-6)2+(y-3)2=4.
(2)圆心(6,3)到直线的距离d=$\frac{|6-3-5|}{\sqrt{2}}$=$\sqrt{2}$,
∴|CD|=2$\sqrt{4-2}$=2$\sqrt{2}$.

点评 本题考查轨迹方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为(  )
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.a、b、c是三条直线,α、β是两个平面,b?α,c?α.则下列命题不成立的是(  )
A.若α∥β,c⊥α,则c⊥βB.“若b⊥β,则α⊥β”的逆命题
C.若a是c在α的射影,a⊥b,则b⊥cD.“若b∥c,则c∥α”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是(  )
A.(2x+2)5B.2x5C.(2x-1)5D.32x5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y都是正数,且lnx+lny=ln(x+y),则4x+y的最小值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在抛物线y=4x2上有一点P,使这点到直线y=4x-5的距离最短,求该点P坐标和最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知|2x-1|=a有两个不等实根,则实数a的范围是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步练习册答案