【题目】已知数列{an}中,an=﹣4n+5,等比数列{bn}的公比q满足q=an﹣an﹣1(n≥2),且b1=a2 , 则|b1|+|b2|+…+|bn|=( )
A.1﹣4n
B.4n﹣1
C.
D.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求证:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF= ,则下列结论中错误的是( )
A.AC⊥BE
B.EF∥平面ABCD
C.三棱锥A﹣BEF的体积为定值
D.异面直线AE,BF所成的角为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)判断f(x)的奇偶性;
(2)用单调性的定义证明f(x)为R上的增函数;
(3)若对任意的t∈R,不等式f(mt2+1)+f(1﹣mt)>0恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=4x+a2x+b,
(1)若f(0)=1,f(﹣1)=﹣ ,求f(x)的解析式;
(2)由(1)当0≤x≤2时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,且an=2an﹣1+2n(n≥2,且n∈N*)
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设数列{an}的前n项之和Sn , 求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}. (Ⅰ)写出集合B的所有子集;
(Ⅱ)若A∩C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈(0,1),给出以下四个命题:
①四边形MENF为平行四边形;
②若四边形MENF面积s=f(x),x∈(0,1),则f(x)有最小值;
③若四棱锥A﹣MENF的体积V=p(x),x∈(0,1),则p(x)为常函数;
④若多面体ABCD﹣MENF的体积V=h(x),x∈( ,1),则h(x)为单调函数;
其中假命题为 ( )
A.①
B.②
C.③
D.④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com