精英家教网 > 高中数学 > 题目详情
如图,已知等腰△ABC的底边BC=3,顶角A为120°,D是BC边上一点,且BD=1,把△ADC沿AD折起,使得平面CAD⊥平面ABD,连接BC形成三棱锥C-ABD。
(1)①求证:AC⊥平面ABD;
②求三棱锥C-ABD的体积;
(2)求AC与平面BCD所成角的正弦值。
解:(1)①由已知得,∠B=∠C=30°,AB=AC
在△ABD中,由BD=1,得

在△ACD中,∵AC2+AD2=4=CD2
∴AC⊥AD
平面ADC⊥平面ABD,
∴AC⊥平面ABD。
②∵AC⊥平面ABD

(2)由BD=1,得CD=2
在平面内作等腰△ABC底边上的高线AE,点E为垂足,

在三棱锥C-ABD中,连接CE,作AH⊥CE于点H,
∵BD⊥AC,BD⊥AE,
∴BD⊥平面ACE
∵AH平面ACE,
∴BD⊥AH,
∴AH⊥平面BCD,
∴∠ACH是直线AC与平面BCD所成的角
在Rt△ACE中,得
 ∴
即直线AC与平面BCE所成的角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:PB⊥BC;
(2)在线段PB上找一点E,使AE∥平面PCD;
(3)求二面角A-CD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰梯形ABCQ,AB∥CQ,CQ=2AB=2BC=4,D是CQ的中点,∠BCQ=60°,将△QDA沿AD折起,点Q变为点P,使平面PAD⊥平面ABCD.
(1)求证:BC∥平面PAD;
(2)求证:△PBC是直角三角形;
(3)求三棱锥P-BCD的体积.

查看答案和解析>>

科目:高中数学 来源:江苏模拟题 题型:解答题

如图,已知等腰梯形ABCQ,AB∥CQ,CQ=2AB=2BC=4,D是CQ的中点,∠BCQ=60°,将△QDA沿AD折起,点Q变为点P,使平面PAD⊥平面ABCD。
(1)求证:BC∥平面PAD;
(2)求证:△PBC是直角三角形;
(3)求三棱锥P-BCD的体积。

查看答案和解析>>

科目:高中数学 来源:2011年吉林省实验中学高考数学一模试卷(理科)(解析版) 题型:解答题

如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

同步练习册答案