【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
科目:高中数学 来源: 题型:
【题目】在平面内,定点A,B,C,D满足| |=| |=| |,| || |=| || |=| || |=﹣4,动点P,M满足| |=2, = ,则| |的最大值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)等比数列{bn}满足:b1=a1 , b2=a2﹣1,若数列cn=anbn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x2﹣1|+x2+kx,且定义域为(0,2).
(1)求关于x的方程f(x)=kx+3在(0,2)上的解;
(2)若关于x的方程f(x)=0在(0,2)上有两个的解x1 , x2 , 求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是公差为d的等差数列,{bn}是公比为q(q≠1)的等比数列.记cn=bn﹣an .
(1)求证:数列{cn+1﹣cn+d}为等比数列;
(2)已知数列{cn}的前4项分别为9,17,30,53.
①求数列{an}和{bn}的通项公式;
②是否存在元素均为正整数的集合A={n1 , n2 , …,nk},(k≥4,k∈N*),使得数列cn1 , cn2 , …,cnk等差数列?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com