精英家教网 > 高中数学 > 题目详情
14.计算:
(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{25}{36}$)0.5+$\sqrt{(-2)^{2}}$;
(2)$\frac{1}{2}$1g$\frac{32}{49}$一$\frac{4}{3}$1g$\sqrt{8}$+lg$\sqrt{245}$.

分析 (1)利用有理指数幂的运算法则化简求解即可.
(2)利用对数运算法则化简求解即可.

解答 解:(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{25}{36}$)0.5+$\sqrt{(-2)^{2}}$
=1+$\frac{1}{4}×\frac{2}{3}$+$\frac{5}{6}$+2=4;
(2)$\frac{1}{2}$1g$\frac{32}{49}$一$\frac{4}{3}$1g$\sqrt{8}$+lg$\sqrt{245}$=$\frac{5}{2}lg2-lg7-\frac{4}{3}×\frac{3}{2}lg2+\frac{1}{2}(2lg7+lg5)$
=$\frac{1}{2}(lg2+lg5)$=$\frac{1}{2}$.

点评 本题考查有理指数幂的运算以及对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求下列函数的导数:
(1)y=xarcsinx;
(2)y=xe${\;}^{{x}^{2}}$;
(3)y=$\frac{1}{1+\sqrt{x}}$;
(4)y=arctan$\frac{1}{x}$+xln$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知3cos2α+2cos2β=2cosα,求sin2α+cos2β取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面几个空间图形中,虚线、实线使用不正确的有(  )
A.(2)(3)B.(1)(3)C.(3)(4)D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把数列{3n}(n∈N*)中的数按上小下大,左小右大的原则排成如图所示三角形表:

设a(i,j)(i,j∈N*)是位于从上往下第i行且从左往右第j个数,则a(37,6)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,求证:cos(A+B)=-cosC,cos$\frac{A+B}{2}$=sin$\frac{C}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若点A是不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,所表示的平面区域内的一个动点,点B是直线y=1上的动点,O为坐标原点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值时的最优解不唯一,则点B的横坐标是1或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是一个程序框图,则输出的n的值是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点A(-1,-2)且焦点与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1的两个焦点相同的椭圆的标准方程是$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

同步练习册答案