分析 (1)由△ABC中,$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$,G为重心,D为中点,有$\overrightarrow{AG}$=$\frac{2}{3}$$\overrightarrow{AD}$,运用中点的向量表示即可得证;
(2)利用三角形的内切圆的切线长定理、向量的运算和数量积定义即可得出.
解答 解:(1)证明:△ABC中,$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$,
可得G为△ABC的重心,D为BC的中点,
即有$\overrightarrow{AG}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{2}{3}$×$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)设点M,E,F分别是内切圆与三边相切的切点.
设AE=AF=x,CM=CF=y,BM=BE=z.
则 $\left\{\begin{array}{l}{x+z=2}\\{x+y=3}\\{y+z=4}\end{array}\right.$,解得x=$\frac{1}{2}$.
设∠OAC=θ.在Rt△OAF中,AO•cosθ=AF=$\frac{1}{2}$.
∴$\overrightarrow{AC}•\overrightarrow{AO}$=|$\overrightarrow{AC}$|•|$\overrightarrow{AO}$|cosθ=|$\overrightarrow{AC}$|•|$\overrightarrow{AF}$|=3×$\frac{1}{2}$=$\frac{3}{2}$.
点评 本题考查了三角形重心的向量表示和性质,以及内切圆的性质、向量的运算和数量积运算,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | an=$\frac{2n-1}{2n}$ | B. | an=$\frac{2n+1}{2n}$ | C. | an=$\frac{2n-1}{{2}^{n}}$ | D. | an=$\frac{2n+1}{{2}^{n}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{AE}•\overrightarrow{BC}$<$\overrightarrow{AE}•\overrightarrow{CD}$ | B. | $\overrightarrow{AE}•\overrightarrow{BC}$=$\overrightarrow{AE}•\overrightarrow{CD}$ | ||
C. | $\overrightarrow{AE}•\overrightarrow{BC}$>$\overrightarrow{AE}•\overrightarrow{CD}$ | D. | $\overrightarrow{AE}•\overrightarrow{BC}$与$\overrightarrow{AE}•\overrightarrow{CD}$不能比较大小 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com