分析 (1)由已知可得数列递推式${a}_{n+1}=\frac{{a}_{n}}{{a}_{n}+3}$,取倒数后构造等比数列{$\frac{1}{{a}_{n}}+\frac{1}{2}$},由等比数列的通项公式求得数列{an}的通项公式;
(2)把数列{an}的通项公式代入bn=$\frac{{3}^{n}}{2}$anan+1,整理后利用裂项相消法求Sn,放缩得答案.
解答 证明:(1)由已知${a}_{n+1}=\frac{{a}_{n}}{{a}_{n}+3}$,取倒数得:$\frac{1}{{a}_{n+1}}=\frac{3}{{a}_{n}}+1$,
变形得$\frac{1}{{a}_{n+1}}+\frac{1}{2}=3(\frac{1}{{a}_{n}}+\frac{1}{2})$.
∴{$\frac{1}{{a}_{n}}+\frac{1}{2}$}是首项为$\frac{1}{{a}_{1}}+\frac{1}{2}$=$\frac{3}{2}$,公比为3的等比数列,
∴$\frac{1}{{a}_{n}}+\frac{1}{2}=\frac{3}{2}•{3}^{n-1}=\frac{1}{2}•{3}^{n}$,
∴${a}_{n}=\frac{2}{{3}^{n}-1}$;
(2)bn=$\frac{{3}^{n}}{2}$anan+1 =$\frac{2•{3}^{n}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1}$.
∴Sn=b1+b2+…+bn=$(\frac{1}{{3}^{1}-1}-\frac{1}{{3}^{2}-1})+(\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1})+…+(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$
=$\frac{1}{2}-\frac{1}{{3}^{n+1}-1}<\frac{1}{2}$.
点评 本题考查数列的函数特性,考查了数列递推式,考查等比关系的确定,训练了裂项相消法求数列的和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(\sqrt{2},+∞)$ | B. | (-∞,-1) | C. | (5,+∞) | D. | (-1,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | $\sqrt{13}$ | C. | 1 | D. | $-\sqrt{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com