精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=xlnx,(x>0).
(1)求函数f(x)的单调区间;
(2)设F(x)=ax2+f'(x),(a∈R),F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由.

分析 (1)求导函数f′(x),解不等式f′(x)>0得出增区间,解不等式f′(x)<0得出减区间;
(2)求F′(x),讨论F′(x)=0的解的情况及F(x)的单调性得出结论.

解答 解:(1)函数的定义域为(0,+∞)
求导函数,可得f′(x)=1+lnx
令f′(x)=1+lnx=0,可得x=$\frac{1}{e}$,
∴0<x<$\frac{1}{e}$时,f′(x)<0,x>$\frac{1}{e}$时,f′(x)>0
∴函数f(x)在(0,$\frac{1}{e}$)上单调递减,在($\frac{1}{e}$,+∞)单调递增,
(2)∴F(x)=ax2+f′(x)(x>0),
∴F′(x)=2ax+$\frac{1}{x}$=$\frac{2{ax}^{2}+1}{x}$(x>0).
当a≥0时,F′(x)>0恒成立,∴F(x)在(0,+∞)上为增函数,
∴F(x)在(0,+∞)上无极值.
当a<0时,令F′(x)=0得x=$\sqrt{-\frac{1}{2a}}$或x=-$\sqrt{-\frac{1}{2a}}$(舍).
∴当0<x<$\sqrt{-\frac{1}{2a}}$时,F′(x)>0,当x>$\sqrt{-\frac{1}{2a}}$时,F′(x)<0,
∴F(x)在(0,$\sqrt{-\frac{1}{2a}}$)上单调递增,在($\sqrt{-\frac{1}{2a}}$,+∞)上单调递减,
∴当x=$\sqrt{-\frac{1}{2a}}$时,F(x)取得极大值F($\sqrt{-\frac{1}{2a}}$)=$\frac{1}{2}$+ln $\sqrt{-\frac{1}{2a}}$,无极小值,
综上:当a≥0时,F(x)无极值,
当a<0时,F(x)有极大值$\frac{1}{2}$+ln $\sqrt{-\frac{1}{2a}}$,无极小值.

点评 本题考查函数的导数的应用,函数的导数的最值的应用,考查分析问题解决问题的能力,分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,$sinx>\frac{{\sqrt{3}}}{2}$,则(  )
A.﹁p:?x∈R,sin $x≤\frac{{\sqrt{3}}}{2}$B.﹁p:?x∈R,$sinx<\frac{{\sqrt{3}}}{2}$
C.﹁p:?x∈RD.﹁p:?x∈R,$sinx≤\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$动点M的轨迹为曲线C.
(1)求C的方程及其离心率;
(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为$\frac{\sqrt{3}}{2}$,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程log2x+x=3的解所在区间是(  )
A.(0,1)B.(1,2)C.(3,+∞)D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆的方程为x2+y2+ax+2y+a2=0,要使过定点A(1,2)作圆的切线有两条,则a的取值范围是(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x-3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为$\sqrt{37}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$中,以点M(1,2)为中点的弦所在直线斜率为(  )
A.$\frac{9}{16}$B.$\frac{9}{32}$C.$\frac{9}{64}$D.$-\frac{9}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知${({x^{\frac{2}{3}}}+3{x^2})^n}$的展开式中,各项系数和与它的二项式系数和的比为32.
(1)求展开式中二项式系数最大的项;
(2)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知Sn是等比数列{an}的前n项和,${a_1}=\frac{1}{20},9{S_3}={S_6}$,设Tn=a1•a2•a3•…•an,则使得Tn取最小值时,n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案