D
分析:根据题意,首先由组合数公式可得集合M的情况数目,进而由一元二次不等式的解法分析不等式无解的情况,可得不等式无解的情况数目,用排除法可得答案.
解答:根据题意,M={a,b,c}⊆{-6,-5,-4,-2,1,3,4},
则集合M的情况有C
73=35种,
其中①、当a=1、b=-2、c=3时,有b
2<4ac,不等式
无解,不合题意,
②、当a=1、b=-2、c=4时,有b
2<4ac,不等式
无解,不合题意,
③、当a=1、b=-4、c=4时,有b
2<4ac,不等式
无解,不合题意,
④、当a=3、b=-2、c=4时,有b
2<4ac,不等式
无解,不合题意,
⑤、当a=3、b=-4、c=4时,有b
2<4ac,不等式
无解,不合题意,
⑥、当a=3、b=-5、c=4时,有b
2<4ac,不等式
无解,不合题意,
⑦、当a=3、b=-6、c=4时,有b
2<4ac,不等式
无解,不合题意,
⑧、当a、b、c为1、3、4时,有b
2<4ac,不等式
无解,不合题意,
共8种情况,
则不等式
恒有实数解的情况有35-8=27;
故选D.
点评:本题考查计数原理的运用,关键是对于不等式
恒有实数解的理解.