精英家教网 > 高中数学 > 题目详情

.(12分)已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.

(Ⅰ)      (Ⅱ)  


解析:

:(Ⅰ)设抛物线方程为,将代入方程得

……(1分)

由题意知椭圆、双曲线的焦点为……(2分)

对于椭圆,

………(4分)

对于双曲线,

………………………………(6分)

(Ⅱ)设的中点为的方程为:,以为直径的圆交两点,中点为………(7分)

…(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(3,0),交抛物线于A,B两点,是否存在垂直于x轴的直线l′被以AP为直径的圆截得的弦长为定值?若存在,求出L′的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线、椭圆和双曲线都经过点M(2,1),它们在y轴上有一个公共焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(0,3),交抛物线于A、B两点,是否存在垂直于y轴的直线m被以AP为直径的圆截得的弦长为定值?若存在,求出m的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版选修2-1 2.1曲线与方程练习卷(解析版) 题型:解答题

(12分)已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.

(1)求这三条曲线的方程;

(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案