精英家教网 > 高中数学 > 题目详情
3.函数f(x)=[x]的函数值表示不超过x的最大整数,例如[-3.5]=-4,[2.1]=2,则函数f(x)=[x],x∈[-2,3]与直线y=x(x∈R)的交点个数(  )
A.5个B.6个C.7个D.8个

分析 根据f(x)=[x]的定义,利用分段函数求出函数的解析式,解方程x=[x],x∈[-2,3],即可得到交点个数.

解答 解:根据函数f(x)=[x]的定义可知:
当-2≤x<-1时,f(x)=-2,
当-1≤x<0时,f(x)=-1,
当0≤x<1时,f(x)=0,
当1≤x<2时,f(x)=1,
当2≤x<3时,f(x)=2
当x=3时,f(x)=3,
即f(x)=$\left\{\begin{array}{l}{-2,-2≤x<-1}\\{-1,-1≤x<0}\\{0,0≤x<1}\\{1,1≤x<2}\\{2,2≤x<3}\\{3,x=3}\end{array}\right.$,
由x=[x],x∈[-2,3],可得x=-2,-1,0,1,2,3.
即交点个数为6.
故选:B.

点评 本题主要考查函数解析式的求法,利用函数的定义建立函数关系是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向在C处追赶上渔船乙,刚好用2小时.则BC=28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业在2015年年底共有职工2000人,本年企业利润为3000万,从2016年起计划每年利润增加100万,职工每年净增a人,设从2016年起的第x年(2016年为第一年)该企业人均利润为y万元.
(1)写出y与x之间的函数关系式;
(2)今后为使企业人均利润每年都是增长,那么该企业每年人口的净增不能超过多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥1\\ x-y-2≤0\\ x+y-2≥0\end{array}\right.$,则目标函数z=x+2y+3的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|lnx|,令$a=f({\frac{1}{4}})$,$b=f({\frac{1}{3}})$,c=f(2),则a,b,c的大小关系是a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mx+$\frac{1}{x}$且f(1)=2.
(1)判断函数f(x)的奇偶性
(2)判断函数f(x)在(1,+∞)上的增减性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.命题“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$<0”
B.命题“若sinx=siny,则x=y”的逆否命题为真命题
C.若命题p,¬q都是真命题,则命题“p∧q”为真命题
D.命题“若△ABC为锐角三角形,则有sinA>cosB”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中正确命题的个数是
(1)对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1>0;
(2)命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
(3)回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\hat y$=1.23x+0.08
(4)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
(5)若a,b∈[0,1],则不等式a2+b2<$\frac{1}{4}$ 成立的概率是$\frac{π}{4}$;(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:sinα=$\frac{1}{5}$且tanα<0,试用定义求α的其余三个三角函数值.

查看答案和解析>>

同步练习册答案