精英家教网 > 高中数学 > 题目详情
8.已知圆C经过点A(0,2),B(2,-2),且圆心C在直线x-y+1=0上,则圆C的标准方程为(x+3)2+(y+2)2=25.

分析 设圆心的坐标为C(a,a+1),再根据|CA|=|CB|,求得a的值,可得圆心C的坐标,即可求出圆C的标准方程.

解答 解:由圆心C在直线x-y+1=0上,可设圆心的坐标为C(a,a+1),
再根据圆C经过点A(0,2),B(2,-2),可得|CA|=|CB|,
即(a-0)2+(a-1)2=(a-2)2+(a+3)2,求得a=-3,
可得圆心C的坐标是(-3,-2),
∴圆C的标准方程为(x+3)2+(y+2)2=25.
故答案为(x+3)2+(y+2)2=25.

点评 本题主要考查求圆的标准方程的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某单位委托一家网络调查公司对单位1000名职员进行了QQ运动数据调查,绘制了日均行走步数(千步)的频率分布直方图,如图所示(每个分组包括左端点,不包括右端点,如第一组表示运动量在[4,6)之间(单位:千步)).
(1)求单位职员日均行走步数在[6,8)的人数.
(2)根据频率分布直方图算出样本数据的中位数;
(3)若将频率视为概率,从本单位随机抽取3位职员(看作有放回的抽样),求日均行走步数在[10,14)的职员数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且当x∈[-1,1]时,f(x)=|x|,函数g(x)=$\left\{\begin{array}{l}{sinπx,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={0,1,2,3,4,6},集合B={y|y=2x,x∈A},则A∩B的元素个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x4+4x3+ax2-4x+1的图象恒在x轴上方,则实数a的取值范围是(  )
A.(2,+∞)B.(1,+∞)C.($\frac{\sqrt{3}-1}{2}$,+∞)D.($\frac{\sqrt{2}-1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$),且其图象关于直线x=0对称,则(  )
A.y=f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为增函数
B.y=f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为减函数
C.y=f(x)的最小正周期为$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上为增函数
D.y=f(x)的最小正周期为$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=ax5+bx3+cx+7(其中a,b,c为常数,x∈R),若f(-2011)=-17,则f(2011)=31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知样本数据x1,x2,…,xn的均值=10,则样本数据3x1-1,3x2-1,…,3xn-1的均值为29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和是Sn,且Sn=2an-1 (n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2 an,求数列(-1)nbn2前2n项的和T.

查看答案和解析>>

同步练习册答案