精英家教网 > 高中数学 > 题目详情
函数f(x)=lnx+x2-4零点所在的大致区间为(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)
考点:二分法求方程的近似解
专题:函数的性质及应用
分析:函数f(x)=lnx+x2-4在其定义域(0,+∞)上是增函数,f(1)f(2)<0,由函数零点的判定定理可得函数f(x)=lnx+x2-4零点所在的大致区间.
解答: 解:函数f(x)=lnx+x2-4在其定义域(0,+∞)上是增函数,
再根据f(1)=-3<0,f(2)=ln2>0,可得f(1)f(2)<0,故函数f(x)=lnx+x2-4零点所在的大致区间为(1,2),
故选:A.
点评:本题主要考查用二分法求函数零点的近似值,函数零点的判定定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x
(x≠0)
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)求证:函数f(x)在(0,+∞)为单调增函数;
(Ⅲ)求满足f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在半径为3的同一个球面上.若两圆锥的高的比为1:2,则两圆锥的体积之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-3|<m的解集是空集,则m的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2xlnx+x2-ax+3,其中a∈R.
(Ⅰ)设曲线y=f(x)在点(1,f(1))处的切线与直线2x-y+1=0平行,求a的值;
(Ⅱ)若f(x)≤0在x∈[
1
e
,e]
(e=2.718…)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为(  )
A、(
1
4
1
2
B、(-
1
4
,0)
C、(0,
1
4
D、(
1
2
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义一个新的运算a*b:a*b=
a+b
2
,则同时含有运算符号“*”和“+”且对任意三个实数a,b,c都能成立的一个等式可以是
 
(只要写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①函数f(x)=2x满足:对任意x1、x2∈R且x1≠x2都有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)];
②函数f(x)=log2(x+
1+x2
),g(x)=1+
2
2x-1
不都是奇函数;
③若函数f(x)满足f(x-1)=-f(x+1),且f(1)=2,则f(7)=-2;
④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,极点为A,已知“葫芦”型封闭曲线Ω由圆弧ACB和圆弧BDA组成.已知B(4,
π
2
),C(2
2
π
4
),D(4
2
4

(1)求圆弧ACB和圆弧BDA的极坐标方程;
(2)求曲线Ω围成的区域面积.

查看答案和解析>>

同步练习册答案