精英家教网 > 高中数学 > 题目详情
(2013•福建)椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=
3
(x+c)
与椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于
3
-1
3
-1
分析:由直线y=
3
(x+c)
可知斜率为
3
,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,可得∠MF2F1=30°,进而F1MF2=90°
设|MF2|=m,|MF1|=n,利用勾股定理、椭圆的定义及其边角关系可得
m2+n2=(2c)2
m+n=2a
m=
3
n
,解出a,c即可.
解答:解:如图所示,
由直线y=
3
(x+c)
可知倾斜角α与斜率
3
有关系
3
=tanα,∴α=60°.
又椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,∴∠MF2F1=30°,∴F1MF2=90°
设|MF2|=m,|MF1|=n,则
m2+n2=(2c)2
m+n=2a
m=
3
n
,解得
c
a
=
3
-1

∴该椭圆的离心率e=
3
-1

故答案为
3
-1
点评:本题综合考查了直线的斜率与倾斜角的关系、勾股定理、含30°角的直角三角形的边角关系、椭圆的定义、离心率等基础知识,考查了推理能力和计算能力即数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•福建)阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的S∈(10,20),那么n的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=
1
1-x

两边同时积分得:
1
2
0
1dx+
1
2
0
xdx+
1
2
0
x2dx+…
1
2
0
xndx+…=
1
2
0
1
1-x
dx

从而得到如下等式:
1
2
+
1
2
×(
1
2
)2+
1
3
×(
1
2
)3+…+
1
n+1
×(
1
2
)n+1+…=ln2

请根据以上材料所蕴含的数学思想方法,计算:
C
0
n
×
1
2
+
1
2
C
1
n
×(
1
2
)2+
1
3
C
2
n
×(
1
2
)3+…+
1
n+1
C
n
n
×(
1
2
)n+1
=
1
n+1
[(
3
2
)n+1-1]
1
n+1
[(
3
2
)n+1-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个
π
2
单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈(
π
6
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.

查看答案和解析>>

同步练习册答案