精英家教网 > 高中数学 > 题目详情
已知全集U={小于10的正自然数},其子集A,B满足A∩B={2},CUA∩B={4,6,8},CUA∩CUB={1,9},求A,B.
考点:交、并、补集的混合运算
专题:集合
分析:全集U和其子集A、B都是用列举法给出的,且都含有几个元素,直接运用交、并、补集的概念即可解答.
解答: 解;∵A∩B={2},
∴2∈A,2∈B,
∵CUA∩B={4,6,8},
∴4,6,8∉A,2,4,6,8∈B,
∵CUA∩CUB={1,9},
∴1,9∉A,1,9∉B
∵全集U={小于10的正自然数},
∴A={2,3,5,7},B={2,4,6,8},
点评:本题考查了交、并、补集的混合运算,是概念题,也是较基础的会考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆锥曲线
x=3cosθ
y=2
2
sinθ
(θ是参数)和定点A(0,
3
3
),F1,F2是圆锥曲线的左、右焦点.
(1)求经过点F2且垂直于直线AF1的直线l的参数方程;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF1的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系中,y=ax+
1
a
与y=ax2的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

给出的是计算
1
2
+
1
4
+
1
6
+…+
1
100
的值的一个程序框图,其中判断框内应填入的条件是(  )
A、I<=100
B、I>100
C、I>50
D、I<=50

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在矩形OABC内任取一点P,则点P恰落在图中阴影部分中的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A1,A2是双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的上、下顶点,F是上焦点,B(-b,0),若在线段BF上(不含端点)存在不同的两点P,Q,使得△PA1A2,△QA1A2都是以A1A2为斜边的直角三角形,则双曲线离心率的取值范围为(  )
A、(1,
5
+1
2
B、(1,
2
C、(
5
+1
2
,+∞)
D、(
2
5
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①空间四点共面,则其中必有三点共线;
②空间四点中有三点共线,则此四点必共面;
③空间四点中任何三点不共线,则此四点不共面;
④空间四点不共面,则任意三点不共线.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,2cos(A+B)=1.
(1)求角C的度数;
(2)若BC=a,AC=b且a,b是方程x2-2
3
x+2=0的两个根,求AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义A°B=
AB,AB≥A+B
A+B,AB<A+B
,A•B=
A+B,AB≥A+B
AB,AB<A+B
,设x>0,A=
1
x+1
,B=x,则 A° B-A•B的最小值为
 

查看答案和解析>>

同步练习册答案