精英家教网 > 高中数学 > 题目详情

【题目】设命题p:f(x)=2/(x-m)在区间(1,+∞)上是减函数;;命题q:2x-1+2m>0对任意x∈R恒成立.若(p)∧q为真,求实数m的取值范围。

【答案】(1,+∞)

【解析】试题分析:分别求出命题成立的等价条件,结合复合命题之间的关系可得pq解不等式组即可得结果.

试题解析:若命题p为真,即f(x)= 在区间(1,+∞)上是减函数,f(x)的减区间为(-∞,m)与(m,+∞),所以(1,+∞) (m,+∞),则m≤1

若命题q为真,2x-1+2m>0对任意x∈R恒成立,则2m>1-2x

∵2x>0,∴1-2x<1,即m.>0.5

若(p)∧q为真,则p假q真,

所以m>1.

故实数m的取值范围是(1,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:

时间

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4

小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.

附:线性回归方程中系数计算公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数

(1).讨论函数的单调性;

(2).若不等式对任意的恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地上年度电价为08元,年用电量为1亿千瓦时本年度计划将电价调至055元~075元之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例又当

(1)之间的函数关系式;

(2)若每千瓦时电的成本价为03元,则电价调至多少时,本年度电力部门的收益将比上年增加20%[收益用电量(实际电价-成本价)]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的值域;

(2)若不等式上恒成立,求实数的取值范围;

(3)当 )时,函数 的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,求的单调区间;

(2)若函数处有极值,请证明:对任意时,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 ()的短轴端点, 分别是圆与椭圆上任意两点且线段长度的最大值为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作圆的一条切线交椭圆 两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,存在使不等式成立,求实数的取值范围;

(Ⅱ)若在区间上,函数的图象恒在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如右图所示,设EFE1F1分别是长方体ABCDA1B1C1D1的棱ABCDA1B1C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是 (  )

A. 平行 B. 相交 C. 异面 D. 不确定

查看答案和解析>>

同步练习册答案