精英家教网 > 高中数学 > 题目详情
已知两个二次函数:f(x)=ax2+bx+1与g(x)=a2x2+bx+1(a>1).若x1,x2(其中x1<x2)是方程f(x)=0的二根;若x3,x4(若是x3<x4)是方程g(x)=0的二根.则 x1,x2,x3,x4的大小关系是( )
A.x1<x3<x4<x2
B.x3<x1<x2<x4
C.x1<x3<x2<x4
D.x3<x1<x4<x2
【答案】分析:构造两个函数:F(x)=f(x)-1,G(x)=g(x)-1,通过讨论它们的零点,得出它们的根之间的大小关系.然后通过分类讨论和在同一坐标系里作出F(x)和G(x)的图象,然后将两个图象向上平移一个单位,可得x1,x2,x3,x4的大小关系,最后综合可得出正确的大小关系.
解答:解:记函数F(x)=f(x)-1=ax2+bx,G(x)=g(x)-1=a2x2+bx
两个函数有公共的零点x=0,此外F(x)还有一个零点x=,G(x)还有一个零点x=
①因为a>1,当b<0时,
得必定有
在同一坐标系里作出F(x)和G(x)的图象:

将此两个图象都上移一个单位,可得函数f(x)和g(x)的图象
所以由图象可得x1<x3<x4<x2
②当b>0时,同理可得四个根的大小关系:x1<x3<x4<x2
综上所述,可判断x1,x2,x3,x4的大小关系为:x1<x3<x4<x2
故选A.
点评:本题以一元二次方程的根的分布考查了二次函数的图象与性质,所含字母参数较多,属于难题.采用数形结合与分类讨论的思想解题,是本题解决的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个二次函数:f(x)=ax2+bx+1与g(x)=a2x2+bx+1(a>1).若x1,x2(其中x1<x2)是方程f(x)=0的二根;若x3,x4(若是x3<x4)是方程g(x)=0的二根.则 x1,x2,x3,x4的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个二次函数:y=f(x)=ax2+bx+1与y=g(x)=a2x2+bx+1,函数y=g(x)图象与x轴有两个交点,其横坐标分别为x1,x2(x1<x2).
(1)证明:y=f(x)在(-1,1)上是单调函数;
(2)当a>1时,设x3,x4是方程ax2+bx+1=0的两实根,且x3<x4,当a>1时,试判断x1,x2,x3,x4的大小关系.

查看答案和解析>>

科目:高中数学 来源:山东省临祈市2006—2007学年度上学期高三年级期中统一考试 数学试题(理) 题型:044

解答题:解答应写出文字说明,证明过程或演算步骤.

已知两个二次函数:y=f(x)=ax2+bx+1与y=g(x)=a2x2+bx-1(a>0),函数y=g(x)的图像与x轴有两个交点,其交点横坐标分别为x1,x2(x1<x2)

(1)

试证:y=f(x)在(-1,1)上是单调函数

(2)

当a>1时,设x3,x4是方程ax2+bx+1=0的两实根,且x3>x4,试判断x1,x2,x3,x4的大小关系

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知两个二次函数:f(x)=ax2+bx+1与g(x)=a2x2+bx+1(a>1).若x1,x2(其中x1<x2)是方程f(x)=0的二根;若x3,x4(若是x3<x4)是方程g(x)=0的二根.则 x1,x2,x3,x4的大小关系是


  1. A.
    x1<x3<x4<x2
  2. B.
    x3<x1<x2<x4
  3. C.
    x1<x3<x2<x4
  4. D.
    x3<x1<x4<x2

查看答案和解析>>

同步练习册答案