精英家教网 > 高中数学 > 题目详情

一条直线与两条平行直线相交,证明这三条直线同在一个平面内.

  已知:如图所示,abac=Abc=B,求证:abc共面.

答案:
解析:

∵ ab,∴ ab可确定平面a

  又∵ ac=Abc=B

  ∴ 点ABa ca

  故abc共面.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;
②经过空间一点一定可作一平面与两异面直线都平行;
③已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

下列4个命题:

①四面体的四个面至多只能有三个直角三角形;

②一条直线与一个直二面角的两个面所成角分别为α、β,则α+β>90°;

③在平行四边形ABCD外有一点P,且PA=PB=PC=PD,则ABCD一定是菱形.

④过正方体ABCD—A1B1C1D1的棱AB、BC的中点E、F,作一个与底面ABCD成45°角的截面,则此截面的形状为三角形或六边形.

其中错误命题的序号是__________________.(写出所有符合条件的序号)

查看答案和解析>>

科目:高中数学 来源:2013届江西省高三第四次月考理科数学试卷(解析版) 题型:填空题

给出下列命题:

①经过空间一点一定可作一条直线与两异面直线都垂直;②经过空间一点一定可作一平面与两异面直线都平行;③已知平面,直线,若,则;④四个侧面两两全等的四棱柱为直四棱柱;⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.其中正确命题的序号是      

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌二中高三(上)第四次月考数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;
②经过空间一点一定可作一平面与两异面直线都平行;
③已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌二中高三(上)第四次月考数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;
②经过空间一点一定可作一平面与两异面直线都平行;
③已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中正确命题的序号是   

查看答案和解析>>

同步练习册答案