精英家教网 > 高中数学 > 题目详情
3.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则a的取值范围是(  )
A.-7<a<24B.a=7 或 a=24C.a<-7或 a>24D.-24<a<7

分析 利用点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,列出不等式组,求解即可.

解答 解:点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,
可得:(9-2+a)(-12-12+a)<0,解得:-7<a<24.
关系:A.

点评 本题考查函数与方程的应用,考查不等式的解法,考查计算能力以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x
(1)求函数f(x)在R上的解析式;
(2)写出f(x)单调区间(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.化简$\frac{si{n}^{2}(π-α)•cos(2π-α)•tan(-π+α)}{sin(-π+α)•tan(-α+3π)}$的结果为(  )
A.sinα•cosαB.-sinα•cosαC.sin2αD.cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,若其图象向左平移$\frac{π}{6}$个单位后得到的函数为奇函数,则函数f(x)的图象(  )
A.关于点($\frac{7π}{12}$,0)对称B.关于点(-$\frac{π}{12}$,0)对称
C.关于直线x=-$\frac{π}{12}$对称D.关于直线x=$\frac{7π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=3sin(πx)-$\frac{1}{1-x}$,x∈[-3,5]的所有零点之和为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l过点P(2,4),且与圆O:x2+y2=4相切,则直线l的方程为(  )
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知某牌子汽车生产成本C(万元)与月产量x(台)的函数关系式为C=100+4x,单价p与产量x的函数关系式为p=25-$\frac{1}{8}x$,假设产品能全部售出.
(1)求利润函数f(x)的解析式,并写出定义域;
(2)当月产量x为何值时,利润最大,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b,c∈R且c≠0.
 x 1.5 314 27 
 lgx 2a+b a+b a-c+1 b+c a+2b+c 3(c-a) 2(a+b) b-a 3(a+b)
若上表中的对数值恰有两个是错误的,则a的值为(  )
A.lg$\frac{2}{21}$B.$\frac{1}{2}$lg$\frac{3}{14}$C.$\frac{1}{2}$lg$\frac{3}{7}$D.lg$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100]
(Ⅰ)求图中a的值;
(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

同步练习册答案