精英家教网 > 高中数学 > 题目详情
16.“1<t<4”是“方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示的曲线为焦点在x轴上的椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 由已知条件利用椭圆的性质求解.

解答 解:∵1<t<4,∴0<4-t<3,0<t-1<3,
当t=$\frac{5}{2}$时,4-t=t-1,曲线为圆,
∵由“1<t<4”,推导不出“方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示的曲线为焦点在x轴上的椭圆;
∵“方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示的曲线为焦点在x轴上的椭圆”,
∴$\left\{\begin{array}{l}{4-t>0}\\{t-1>0}\\{4-t>t-1}\end{array}\right.$,解得$\frac{5}{2}<t<4$,
∴“1<t<4”是“方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示的曲线为焦点在x轴上的椭圆”的既不充分也不必要条件.
故选:D.

点评 本题考查充分而不必要条件、必要而不充分条件、充要条件、既不充分也不必要条件的判断,是基础题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知圆M:x2+(y-1)2=1,圆N:x2+(y+1)2=1,直线l1、l2分别过圆心M、N,且l1与圆M相交于A、B,l2与圆N相交于C、D,P是椭圆$\frac{x^2}{3}+\frac{y^2}{4}$=1上的任意一动点,则$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PC}•\overrightarrow{PD}$的最小值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.经过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点的直线l,交抛物线y2=4x于A、B两点,点A关于y轴的对称点为C,则$\overrightarrow{OB}$•$\overrightarrow{OC}$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知全集U={1,2,3,4,5},集合A={1,4,5},B={2,3,4},则A∩(∁UB)=(  )
A.{4}B.{1,5}C.{2,3}D.{1,2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f({2^x})=\frac{2}{x}+3(x≠0)$,则f($\frac{1}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:2lg25lg52lg55lg2=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离小率为$\frac{1}{2}$,F(1,0)为椭圆的一个焦点.
(I)求椭圆C的方程;
(Ⅱ)如图,设B1B2是椭圆C的短轴上的下顶点和上顶点,P是椭圆上异于B1B2的一点,直线B1P与x轴交M,直线B2P与x轴交于点N,又OT是由原点做出的经过M,N两点的圆的切线,T为切点,求|OT|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)对任意实数x满足f(x+a)-f(x)=$\sqrt{3}$[1+f(x)•f(x+a)],讨论f(x)的周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若?x>0,$\frac{ax}{{x}^{2}+1}$≤x-lnx恒成立,则实数a的取值范围是(-∞,2].

查看答案和解析>>

同步练习册答案