精英家教网 > 高中数学 > 题目详情
18.已知二次函数f(x)=x2+mx+n.
(1)若f(x)是偶函数且最小值为1,求f(x)的解析式;
(2)在(1)的前提下,函数$g(x)=\frac{6x}{f(x)}$,解关于x的不等式g(2x)>2x
(3)函数h(x)=|f(x)|,若x∈[-1,1]时h(x)的最大值为M,且M≥k对任意实数m,n恒成立,求k的最大值.

分析 (1)利用偶函数的定义和函数的最值即可求出函数的解析式,
(2)设t=2x,t>0,原不等式化为t<$\sqrt{5}$,即可求出不等式的解集,
(3)分别赋值x=0,-1,1时,即可求出k的最大值.

解答 解:(1)∵f(x)是偶函数,
∴f(-x)=f(x),
∴x2-mx+n=x2+mx+n,
∴m=0,
∵f(x)是偶函数且最小值为1,
∴n=1
∴f(x)=x2+1,
(2)∵$g(x)=\frac{6x}{f(x)}$=$\frac{6x}{{x}^{2}+1}$,g(2x)>2x,设t=2x,t>0,
∴$\frac{6t}{{t}^{2}+1}$>t,
∴t2<5,
∴t<$\sqrt{5}$,
∴2x<$\sqrt{5}$,
解得x<$\frac{1}{2}$log25,
故解集是$\left\{{\left.x\right|x<\frac{1}{2}{{log}_2}5}\right\}$
(3)令x=1,则|1+m+n|≤M,则-M≤1+m+n≤M①
令x=-1,则|1-m+n|≤M,则-M≤1-m+n≤M②
令x=0,则|n|≤M,则-M≤n≤M③
由①+②-2×③得,$M≥\frac{1}{2}$.当且仅当$m=0,n=-\frac{1}{2}$时等号成立.
因此${k_{max}}=\frac{1}{2}$.

点评 本题考查的知识点是函数奇偶性的性质,函数解析式的求法,以及不等式的解集,以及函数恒成立的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知m∈R,函数f(x)=$\left\{\begin{array}{l}|2x+1|,x<1\\ ln(x-1),x>1\end{array}$,g(x)=x2-2x+2m2-1,若函数y=f(g(x))-m有6个零点则实数m的取值范围是$(0,\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)在线段BC1上是否存在点D,使得AD⊥A1B?若存在,求出$\frac{BD}{B{C}_{1}}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.化简$\sqrt{1-{{sin}^2}{{140}°}}$=(  )
A.±cos40°B.cos40°C.-cos40°D.±|cos40°|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\sqrt{-{x^2}+2x+8}$的定义域为集合A,函数g(x)=lg(-x2+6x+m)的定义域为集合B.
(1)当m=-5时,求A∩∁UB;
(2)若A∩B={x|-1<x≤4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,一个顶点为A(2,0),离心率为$\frac{{\sqrt{2}}}{2}$,直线y=k(x-1)与椭圆C交于不同的两点M、N两点.
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{{4\sqrt{2}}}{5}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn+2=2an,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}}$,cn=$\frac{\sqrt{{b}_{n}{b}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.四棱锥P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(1)求证:平面PBC⊥平面PCD;
(2)若M为线段PC上一点,且$\overrightarrow{PM}$=2$\overrightarrow{MC}$,求线段AM与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$cosα=\frac{{\sqrt{5}}}{5}$,且$α∈(0,\frac{π}{2})$.
(Ⅰ)求sin2α;
(Ⅱ)求$tan(α+\frac{π}{4})$.

查看答案和解析>>

同步练习册答案