精英家教网 > 高中数学 > 题目详情

【题目】已知一元二次函数的最大值为,其图象的对称轴为,且与轴两个交点的横坐标的平方和为.

1)求该一元二次函数;

2)要将该函数图象的顶点平移到原点,请说出平移的方式.

【答案】1;(2)见解析.

【解析】

1)利用已知条件设所求二次函数的解析式为,且,并设该二次函数与轴的两个交点坐标分别为,列出韦达定理,结合条件,可解出实数的值,从而可得出所求二次函数的解析式;

2)根据函数的解析式,结合图象变换的规律可得出变换过程.

1)二次函数的顶点为,设函数为,即.

由题意可知,.

设二次函数与轴两个交点的横坐标为,即方程的两根,

由韦达定理.

又由,则,则有,解得.

所以二次函数,即

2)先将函数的图象向左平移个单位,得到函数的图象,再将所得函数的图象向下平移个单位,可得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:

等级

一等品

二等品

三等品

重量(g)

[5,25)

[25,45)

[45,55]

按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】合肥一中、六中为了加强交流,增进友谊,两校准备举行一场足球赛,由合肥一中版画社的同学设计一幅矩形宣传画,要求画面面积为,画面的上、下各留空白,左、右各留空白.

(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?

(2)设画面的高与宽的比为,且,求为何值时,宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只袋中装有编号为1,2,3,…,n的n个小球,n≥4,这些小球除编号以外无任何区别,现从袋中不重复地随机取出4个小球,记取得的4个小球的最大编号与最小编号的差的绝对值为ξn , 如ξ4=3,ξ5=3或4,ξ6=3或4或5,记ξn的数学期望为f(n).
(1)求f(5),f(6);
(2)求f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图的功能是(

A.求数列{ }的前10项的和
B.求数列{ }的前11项的和
C.求数列{ }的前10项的和
D.求数列{ }的前11项的和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,().

(1)求函数的单调区间;

(2)求证:,对于任意,总有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足a1 , 2a2 , a3+6成等差数列,且a42=9a1a5
(1)求数列{an}的通项公式;
(2)设bn=( an+1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

【答案】(1)对称轴为,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.

(1)

,则

的对称轴为,最小正周期

(2)当时,

因为单调递增,在单调递减,

取最大值,在取最小值,

所以

所以

【点睛】

本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.

型】解答
束】
21

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

查看答案和解析>>

同步练习册答案