精英家教网 > 高中数学 > 题目详情

【题目】(1)设a,b是两个不相等的正数,若,用综合法证明:a+b>4

(2)已知a>b>c,且a+b+c=0,用分析法证明:

【答案】(1)详见解析(2)详见解析

【解析】试题分析:(1)综合法,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法称为综合法即由因寻果的方法;(2)分析法,从所要证明的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即执果索因的证明方法.

试题解析:(1)因为a0b0,且a≠b,

所以a+b=a+b)(=1+1+2+2=4.所以a+b4

2)因为abc,且abc0,所以a0c0

要证明原不等式成立,只需证明

即证b2ac3a2,又b=-(ac),从而只需证明(ac2ac3a2

即证(ac)(2ac)>0

因为ac0,2acacaab0

所以(ac)(2ac)>0成立,故原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点(0,1),(3+2,0),(3-2,0)在圆C.

(1)求圆C的方程.

(2)若圆C与直线x-y+a=0交于A,B两点,OA⊥OB,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是双曲线 左支上一点, 是双曲线的左右两个焦点,且,线段的垂直平分线恰好是该双曲线的一条渐近线,则离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是).

(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);

(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.

①请根据上述表格中的统计数据填写下面列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?

②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.

参考公式:,其中.

参考数据:

0.05

0.40

0.25

0.15

0.10

0.05

0.025

0.010

3.841

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数是实数,是虚数单位.

(1)求复数

(2)若复数所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)当时,若对任意互不相等的实数,都有成立,求实数的取值范围;

3)判断函数上的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使成立,则称为函数的不动点,已知.

(1)若有两个不动点为,求函数的零点;

(2)若时,函数没有不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(λx+1)ln x-x+1.

(1)若λ=0,求f(x)的最大值;

(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数 的值分别为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案