【题目】已知函数.
(1)讨论当时,函数的单调性;
(2)当对任意的恒成立,其中.求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知关于直线对称,且圆心在轴上.
(1)求的标准方程;
(2)已经动点在直线上,过点引的两条切线、,切点分别为.
①记四边形的面积为,求的最小值;
②证明直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的参数方程为(为参数),点的极坐标为,设直线与曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).
(1)求数列{an}的通项公式:
(2)若对任意的n∈N*,不等式1≤man≤5恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与圆O:相切的直线l交椭圆C于A,B两点(O为坐标原点),求△AOB面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数g(x)=f(1-x)-kx+k-恰有三个不同的零点,则k的取值范围是( )
A. (-2-,0]∪ B. (-2+,0]∪
C. (-2-,0]∪ D. (-2+,0]∪
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是的导函数的图象,对于下列四个判断,其中正确的判断是( ).
A.在上是增函数;
B.当时,取得极小值;
C.在上是增函数、在上是减函数;
D.当时,取得极大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com