精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论当时,函数的单调性;

2)当对任意的恒成立,其中.的取值范围.

【答案】1为增函数(2

【解析】

1)将代入函数解析式,可求得函数解析式及,由的单调性及导函数与函数单调性关系即可判断.

2)由题意可知对任意的恒成立,求得,并构造函数,求得,可判断上的单调性,从而可得存在,使得,进而可得,由可得方程,代入中,可由求得的取值范围.

1)函数

代入,可得,则.

为单调递增函数,

所以为增函数;

2)由已知有,其中.

.

,其中.

上单调递增.

,当时,

故存在,使得.

时,上单调递减;

时,上单调递增.

.

得,,即.

.

,由,解得.

因为上单调递增,,所以.

,即,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于直线对称,且圆心在轴上.

(1)求的标准方程;

(2)已经动点在直线上,过点的两条切线,切点分别为.

①记四边形的面积为,求的最小值;

②证明直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点轴的正半轴为极轴建立极坐标系已知曲线的极坐标方程为直线的参数方程为为参数),点的极坐标为设直线与曲线相交于两点

1写出曲线的直角坐标方程和直线的普通方程;

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a11anan1n2n≥2nN*.

1)求数列{an}的通项公式:

2)若对任意的nN*,不等式1≤man≤5恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设与圆O相切的直线l交椭圆CAB两点(O为坐标原点),求△AOB面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数g(x)=f(1-x)-kx+k-恰有三个不同的零点,则k的取值范围是(  )

A. (-2-,0]∪ B. (-2+,0]∪

C. (-2-,0]∪ D. (-2+,0]∪

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若方程有两个不相等的实数根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是的导函数的图象,对于下列四个判断,其中正确的判断是( .

A.上是增函数;

B.时,取得极小值;

C.上是增函数、在上是减函数;

D.时,取得极大值.

查看答案和解析>>

同步练习册答案