精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面,点为棱的中点

1)证明:

2)若为棱上一点,满足,求锐二面角的余弦值.

【答案】1)证明见详解;(2

【解析】

1)以A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,利用向量法证明
2)设,由,求出,求出平面ABF的法向量和平面ABP的法向量,利用向量法能求出二面角的余弦值.

证明:(1)∵在四棱锥PABCD中,PA⊥底面ABCDADAB

ABDCADDCAP2AB1,点E为棱PC的中点.
A为原点,ABx轴,ADy轴,APz轴,建立空间直角坐标系,
B100),P002),C220),E111),D020),


2F为棱PC上一点,满足


 

解得

设平面ABF的法向量
,取,得
平面ABP的一个法向量
设二面角的平面角为

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量单位:千克是每平方米种植株数x的函数.当x不超过4时,v的值为2;当时,vx的一次函数,其中当x10时,v的值为4;当x20时,v的值为0

时,求函数v关于x的函数表达式;

当每平方米种植株数x为何值时,每平方米药材的年生长总量单位:千克取得最大值?并求出这个最大值.年生长总量年平均生长量种植株数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有文、明、中、国四个字,有放回地从中任取一个小球,直到”“两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生03之间取整数值的随机数,分别用0123代表文、明、中、国这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:

232 321 230 023 123 021 132 220 001

231 130 133 231 013 320 122 103 233

由此可以估计,恰好第三次就停止的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题,其中所有正确命题的序号是__________

①抛物线的准线方程为

②过点作与抛物线只有一个公共点的直线仅有1条;

是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.

④抛物线上到直线距离最短的点的坐标为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统综》中有这样的一个问题:三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问此人第2天走的路程为

A. 24 B. 48 C. 72 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若是奇函数,求的值,并判断的单调性(不用证明);

(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥如图①所示,图②是它的正(主)视图.已知圆的直径为 是圆周上异于的一点, 的中点.

(I)求该圆锥的侧面积S;

(II)求证:平面⊥平面

(III)若∠CAB=60°,在三棱锥中,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直线上到点距离最近的点的坐标是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案