精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.

【答案】解:(Ⅰ)∵


又∵a,b∈N*
∴b=1,a=1;
(Ⅱ)由(1)得
函数在(﹣1,+∞)单调递增.
证明:任取x1 , x2且﹣1<x1<x2

=
∵﹣1<x1<x2


即f(x1)<f(x2),
故函数 在(﹣1,+∞)上单调递增
【解析】(Ⅰ)由 ,从而求出b=1,a=1;(Ⅱ)由(1)得 ,得函数在(﹣1,+∞)单调递增.从而有f(x1 )﹣f(x2 )= ,进而 ,故函数 在(﹣1,+∞)上单调递增.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设偶函数的导函数是函数,当时, ,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|sinx|+2|cosx|的值域为(
A.[1,2]
B.[ ,3]
C.[2, ]
D.[1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图).s1、s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是(

A.s1>s2
B.s1=s2
C.s1<s2
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为平行四边形,AB=3,AC=4,AD=5,SA⊥平面ABCD.

(1)证明:AC⊥平面SAB;
(2)若SA=2,求三棱锥A﹣SCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】排列组合
(1)7位同学站成一排,甲、乙两同学必须相邻的排法共有多少种?
(2)7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?
(3)7位同学站成一排,甲不站排头,乙不站排尾,不同站法种数有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明
(1)如果a,b都是正数,且a≠b,求证: + +
(2)设x>﹣1,m∈N* , 用数学归纳法证明:(1+x)m≥1+mx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:tan(α+ )=﹣ ,( <α<π).
(1)求tanα的值;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求实数m的取值范围.

查看答案和解析>>

同步练习册答案