【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,离心率,点在椭圆上.
(1)求椭圆的方程;
(2)设过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;
(3)在第(2)问的条件下,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示.
(1)求毕业大学生月收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求曲线的方程;
(2)若双曲线的右焦点即为曲线的右顶点,直线为的一条渐近线.
①.求双曲线C的方程;
②.过点的直线,交双曲线于两点,交轴于点(点与的顶点不重合),当,且时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了, , , 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com