【题目】设数列的首项,前项和满足关系式.
(1)求证:数列是等比数列;
(2)设数列的公比为,作数列,使,求数列的通项公式;
(3)数列满足条件(2),求和:.
【答案】(1)见解析.
(2).
(3).
【解析】
(1)利用,求得数列的递推式,整理得,进而可推断出时,数列成等比数列,然后分别求得和,验证亦符合,进而可推断出是一个首项为1,公比为的等比数列;(2)把 的解析式代入,进而可知,判断出是一个首项为1,公差为1的等差数列.进而根据等差数列的通项公式求得答案;(3)由是等差数列.进而可推断出和也是首项分别为1和2,公差均为2的等差数列,进而用分组法可求得结果.
(1)因为 ①
②
,得,所以.
又由,得.又因为,所以.
所以是一个首项为1,公比为的等比数列.
(2)由,得
.
所以是一个首项为1,公差为1的等差数列.于是.
(3)由,可知和是首项分别为1和2,公差均为2的等差数列,于是,
所以
.
科目:高中数学 来源: 题型:
【题目】已知点A(3,3),B(5,–1)到直线l的距离相等,且直线l过点P(0,1),则直线l的方程( )
A.y=1B.2x+y–1=0
C.2x+y–1=0或2x+y+1=0D.y=1或2x+y–1=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有高中学生500人,其中男生320人,女生180人.有人为了获得该校全体高中学生的身高信息,采用分层抽样的方法抽取样本,并观测样本的指标值(单位:cm),计算得男生样本的均值为173.5,方差为17,女生样本的均值为163.83,方差为30.03.
(1)根据以上信息,能够计算出总样本的均值和方差吗?为什么?
(2)如果已知男、女样本量按比例分配,你能计算出总样本的均值和方差各为多少吗?
(3)如果已知男、女的样本量都是25,你能计算出总样本的均值和方差各为多少吗?它们分别作为总体均值和方差的估计合适吗?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在试验E“连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A表示随机事件“第一次掷出的点数为1”,事件表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j,事件B表示随机事件“2次掷出的点数之和为6”,事件C表示随机事件“第二次掷出的点数比第一次的大3”,
(1)试用样本点表示事件与;
(2)试判断事件A与B,A与C,B与C是否为互斥事件;
(3)试用事件表示随机事件A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.
(1)求和的标准方程;
(2)过点的直线与交于,与交于,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着汽车消费的普及,二手车流通行业得到迅猛发展.某汽车交易市场对2017 年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到如图1所示的频率分布直方图,在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.
(1)若在该交易市场随机选取3辆2017年成交的二手车,求恰有2辆使用年限在的概率;
(2)根据该汽车交易市场往年的数据,得到图2所示的散点图,其中 (单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.
①由散点图判断,可采用作为该交易市场二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):
试选用表中数据,求出关于的回归方程;
②该汽车交易市场拟定两个收取佣金的方案供选择.
甲:对每辆二手车统—收取成交价格的的佣金;
乙:对使用8年以内(含8年)的二手车收取成交价格的的佣金,对使用时间8年以上(不含 8年)的二手车收取成交价格的的佣金.
假设采用何种收取佣金的方案不影响该交易市场的成交量,根据回归方程和图表1,并用,各时间组的区间中点值代表该组的各个值.判断该汽车交易市场应选择哪个方案能获得更多佣金.
附注:
于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,;
②参考数据:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com