精英家教网 > 高中数学 > 题目详情
(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.
分析:(1)已知f(x)=lnx-ax+1,对你进行求导,根据导数和斜率的关系,求出切线的方程;
(2)令y=0,进行变形lnx=ax-1,利用数形结合的方法,进行分类讨论,讨论函数y=f(x)的零点;
解答:解:(1)f(1)=-a+1,
k1=f′(1)=1-a,所以切线l的方程为
y-f(1)=k1×(x-1),即y=(1-a)x
作F(x)=f(x)-(1-a)x=lnx-x+1,x>0,则
x (0,1) 1 (1,+∞)
F′(x) + 0 -
F(x) 最大值
F′(x)=
1
x
-1=
1
x
(1-x),解F′(x)=0得x=1.
所以任意x>0且x≠1,F(x)<0,f(x)<(1-a)x,
即函数y=f(x)(x≠1)的图象在直线l的下方.
(2)令y=0,即lnx=ax-1,画图可知
当a≤0时,直线y=ax-1与y=lnx的图象有且只有一个交点,即一个零点;
当a>0时,设直线y=ax-1与y=lnx切于点(x0,lnx0),切线斜率为k=
1
x0

∴切线方程为y-lnx0=
1
x0
(x-x0),把(0,-1)代入上式可得x0=1,k=1
∴当0<a<1时,直线y=ax-1与y=lnx有两个交点,即两个零点;
当a=1时直线y=ax-1与y=lnx相切于一点,即一个零点;
当a>1时直线y=ax-1与y=lnx没有交点,即无零点.
综上可知,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;
当0<a<1时,f(x)有两个零点.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,还考查了数形结合的思想,是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江门一模)(几何证明选讲选做题)
如图,E、F是梯形ABCD的腰AD、BC上的点,其中CD=2AB,EF∥AB,若
EF
AB
=
CD
EF
,则
AE
ED
=
2
2
(或相等的数值)
2
2
(或相等的数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃) -2 -3 -5 -6
销售额(万元) 20 23 27 30
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=
b
x+a的系数
b
=-2.4
.则预测平均气温为-8℃时该商品销售额为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,某几何体的正视图和侧视图都是对角线长分别为4和3的菱形,俯视图是对角线长为3的正方形,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,四边形ABCD中,AB=5,AD=3,cosA=
45
,△BCD是等边三角形.
(1)求四边形ABCD的面积;
(2)求sin∠ABD.

查看答案和解析>>

同步练习册答案