【题目】已知函数满足,,.
(1)求函数的解析式;
(2)求函数的单调区间;
(3)当且时,求证:.
【答案】(1);(2)当时,函数的单调递增区间为,
当时,函数的单调递增区间为,单调递减区间为;(3)详见解析.
【解析】
(1)由已知中,可得,进而可得,,进而得到函数的解析式;
(2)由(1)得:,即,,对a进行分类讨论,可得不同情况下函数的单调区间;
(3)令,,然后利用导数研究各自单调性,结合单调性分类去掉和的绝对值,再构造差函数,利用导数证明大小.
(1)∵,
∴,
∴,
即,
又∵,
所以,
所以;
(2)∵,
∴,
∴,
①当时,恒成立,函数在R上单调递增;
②当时,由得,
当时,,单调递减,
当时,,单调递增,
综上,当时,函数的单调递增区间为,
当时,函数的单调递增区间为,单调递减区间为;
(3)令,,当且时,
由得在上单调递减,
所以当时,,当时,,
而,,
所以在上单调递增,,
则在上单调递增,,
①当时,,
,所以在上单调递减,
,,
②当时,,
,,
所以,所以递减,,,
综上, .
科目:高中数学 来源: 题型:
【题目】已知平面上一动点A的坐标为.
(1)求点A的轨迹E的方程;
(2)点B在轨迹E上,且纵坐标为.
(i)证明直线AB过定点,并求出定点坐标;
(ii)分别以A,B为圆心作与直线相切的圆,两圆公共弦的中点为H,在平面内是否存在定点P,使得为定值?若存在,求出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】骰子,古代中国民间娱乐用来投掷的博具,早在战国时期就有.最常见的骰子是正六面体,也有正十四面体、球形十八面体等形制的骰子,如图是满城汉墓出土的铜茕,它是一个球形十八面体骰子,有十六面刻着一至十六数字,另两面刻“骄”和“酒来”,其中“骄”表示最大数十七,“酒来”表示最小数零,每投一次,出现任何一个数字都是等可能的.现投掷铜茕三次观察向上的点数,则这三个数能构成公比不为1的等比数列的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种水果按照果径大小可分为四类:标准果,优质果,精品果,礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)用样本估计总体,果园老板提出两种购销方案给采购商参考:
方案1:不分类卖出,单价为20元/.
方案2:分类卖出,分类后的水果售价如下表:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/) | 16 | 18 | 22 | 24 |
从采购商的角度考虑,应该采用哪种方案较好?并说明理由.
(2)从这100个水果中用分层抽样的方法抽取10个,再从抽取的10个水果中随机抽取3个,表示抽取到精品果的数量,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为( )
A.3B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.
(Ⅰ)证明:平面 平面;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,左焦点、右焦点都在轴上,点是椭圆上的动点,的面积的最大值为,在轴上方使成立的点只有一个.
(1)求椭圆的方程;
(2)过点的两直线,分别与椭圆交于点,和点,,且,比较与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为49.5尺,夏至、大暑、处暑三个节气晷长之和为10.5尺,则立秋的晷长为( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com