精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=
 
分析:根据点P(an,an+1)(n∈N*)在直线x-y+1=0上,求出an的通项公式,然后再求出sn的表达式,进而求得答案.
解答:解:∵点P(an,an+1)(n∈N*)在直线x-y+1=0上,
∴an+1-an=1,
∴数列{an}是等差数列,
∵a1=1,
∴sn=
n2+n
2

1
sn
=
2
n(n+1)

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=2(1-
1
2
+
1
2
-…-
1
n+1
)=
2n
n+1

故答案为
2n
n+1
点评:本题主要考查数列求和的知识点,解答本题的关键是证明数列{an}是等差数列,然后求出等差数列的前n项和,然后在用裂项相消法求得
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案