精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在三棱锥中, 平面,点是线段的中点.

(1)如果,求证:平面平面

(2)如果,求直线和平面所成的角的余弦值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1)要证面面垂直,就要证线面垂直,由已知与平面垂直可得,由勾股定理又可得,从而得与平面垂直,因此由面面垂直的判定定理可得面面垂直;(2)要求直线与平面所成的角,就要作直线在平面内的射影,因此要过作平面的垂线,根据已知条件,取中点 平行,则必与平面垂直,从而作出了线面角,在三角形中计算可得.

解析:(1)证明:

平面平面

在平面上,

平面

平面平面平面

(2)取线段的中点联结

中,

平面平面为直线和平面

所成的角.

中,

中,

中,

中,

故直线与平面所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京大学从参加逐梦计划自主招生考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组 后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求分数在内的频率;

2)估计本次考试成绩的中位数(结果四舍五入,保留整数);

3)用分层抽样的方法在分数段为的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有人在分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数

(1)若,求的取值范围;

(2)讨论的单调性;

(3)当时,讨论在区间内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为

)证明数列是等比数列,求出数列的通项公式.

)设,求数列的前项和

)数列中是否存在三项,它们可以构成等比数列?若存在,求出一组符合条件的项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切.

(1)求圆的方程;

(2)求直线截圆所得弦的长;

(3)过点作两条直线与圆相切,切点分别为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(题文)“你低碳了吗?”这是某市为倡导建设节约型社会而发布的公益广告里的一句话,活动组织者为了了解这则广告的宣传效果,随机抽取了120名年龄在,…,的市民进行问卷调查,由此得到的样本的频率分布直方图如图所示.

(1)根据直方图填写频率分布统计表;

(2)根据直方图,试估计受访市民年龄的中位数(保留整数);

(3)如果按分层抽样的方法,在受访市民样本年龄在中共抽取5名市民,再从这5人中随机选2人作为本次活动的获奖者,求年龄在的受访市民恰好各有一人获奖的概率.

分组

频数

频率

18

0.15

30

0.2

6

0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心率为

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线轴交于点,与椭圆交于两个不同的点,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;

(3)当 时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左、右焦点,离心率为 分别是椭圆的上、下顶点, .

(1)求椭圆的方程;

(2)若直线与椭圆交于相异两点,且满足直线的斜率之积为,证明:直线恒过定点,并采定点的坐标.

查看答案和解析>>

同步练习册答案