(05年江苏卷)(14分)
设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且
其中A,B为常数.
(Ⅰ)求A与B的值;
(Ⅱ)证明数列{an}为等差数列;
(Ⅲ)证明不等式对任何正整数m、n都成立.
解析:(1)由已知,得S1=a1=1,S2=a1+a2=7,S3=a1+a2+a3=18.
由(5n-8)Sn+1-(5n+2)Sn=An+B知
解得 A=-20, B=-8。
(Ⅱ)方法1
由(1)得,(5n-8)Sn+1-(5n+2)Sn=-20n-8, ①
所以 (5n-3)Sn+2-(5n+7)Sn+1=-20n-28, ②
②-①,得, (5n-3)Sn+2-(10n-1)Sn+1+(5n+2)Sn=-20, ③
所以 (5n+2)Sn+3-(10n+9)Sn+2+(5n+7)Sn+1=-20.④
④-③,得 (5n+2)Sn+3-(15n+6)Sn+2+(15n+6)Sn+1-(5n+2)Sn=0.
因为 an+1=Sn+1-Sn
所以 (5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0.
又因为 (5n+2),
所以 an+3-2an+2+an+1=0,
即 an+3-an+2=an+2-an+1, .
又 a3-a2=a2-a1=5,
所以数列为等差数列。
方法2.
由已知,S1=a1=1,
又(5n-8)Sn+1-(5n+2)Sn=-20n-8,且5n-8,
所以数列是惟一确定的。
设bn=5n-4,则数列为等差数列,前n项和Tn=
于是 (5n-8)Tn+1-(5n+2)Tn=(5n-8)
由惟一性得bn=a,即数列为等差数列。
(Ⅲ)由(Ⅱ)可知,an=1+5(n-1)=5n-4.
要证了
只要证 5amn>1+aman+2
因为 amn=5mn-4,aman=(5m-4)(5n-4)=25mn-20(m+n)+16,
故只要证 5(5mn-4)>1+25mn-20(m+n)+16+2
因为
=20m+20n-37,
所以命题得证。
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年莆田四中一模理) (14分)
由函数确定数列,,若函数的反函数 能确定数列,,则称数列是数列的“反数列”。
(1)若函数确定数列的反数列为,求的通项公式;
(2)对(1)中,不等式对任意的正整数恒成立,求实数的范围;
(3)设,若数列的反数列为,与的公共项组成的数列为;求数列前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com