精英家教网 > 高中数学 > 题目详情
已知定点A(2,0),B是曲线x2+y2=1上的一动点,点M在线段AB上,且满足AM:BM=2:1,求点M的轨迹方程.
考点:轨迹方程
专题:计算题,直线与圆
分析:设出动点坐标,利用向量条件确定坐标之间的关系,利用B在圆上,可得结论.
解答: 解:设点M的坐标为(x,y),点B(m,n),则m2+n2=1.
∵动点M满足足AM:BM=2:1,
∴(x-2,y)=2(m-x,n-y)
∴m=1.5x-1,n=1.5y,
∵m2+n2=1,
∴(1.5x-1)2+(1.5y)2=1
∴(x-
2
3
2+y2=
4
9
点评:本题考查点的轨迹方程、相等向量的性质、代入法等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:曲线y=e-x在点(-1,e)处的切线方程:y=-ex;命题q:函数y=sinx+
4
sinx
(0<x<π)值域为[4,+∞),则下列判断正确的是(  )
A、“p∨q”为真
B、“¬p∨q”为真
C、“¬p∧q”为真
D、“¬p∧¬q”为真

查看答案和解析>>

科目:高中数学 来源: 题型:

某地方政府为地方电子工业发展,决定对某一进口电子产品征收附加税.已知这种电子产品国内市场零售价为每件250元,每年可销售40万件,若政府征收附加税率为t元时,则每年减少
8
5
t万件.
(1)将税金收入表示为征收附加税率的函数;
(2)在该项经营中每年征收附加税金不低于600万元,那么附加税率应控制在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
2
-alnx(a>1).
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)讨论f)x)在区间(1,e)上的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1).若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设直角三角形的两锐角分别为α,β,则有sinα+sinβ≤
2
成立,类比到三棱锥中,若三个侧面两侧垂直,三条侧棱与底面所成的角分别为α,β,γ,则有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x+2
(1)求f(x)和g(x)的解析式;
(2)若不等式f(x)≥ag(x)对任意实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=1.70.7,b=0.71.2,c=log0.71.2,则a、b、c的大小关系是(  )
A、a<b<c
B、a<c<b
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数m(x)=log4(4x+1),n(x)=kx(k∈R).
(1)若F(x)为R上的奇函数,且当x>0时,F(x)=m(x),求当x<0时F(x)的表达式;
(2)已知f(x)=m(x)+n(x)为偶函数.
①求k的值;
②设g(x)=log4(a•2x-
4
3
a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案