精英家教网 > 高中数学 > 题目详情

【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合: ①M={(x,y)|y= };
②M={(x,y)|y=log2x};
③M={(x,y)|y=2x﹣2};
④M={(x,y)|y=sinx+1}.
其中是“垂直对点集”的序号是(
A.①②③
B.①②④
C.①③④
D.②③④

【答案】C
【解析】解:由题意可得:集合M是“垂直对点集”,即满足: 曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.
①M={(x,y)|y= },其图象向左向右和x轴无限接近,向上和y轴无限接近,
据幂函数的图象和性质可知,
在图象上任取一点A,连OA,过原点作OA的垂线OB必与y= 的图象相交,
即一定存在点B,使得OB⊥OA成立,
故M={(x,y)|y= }是“垂直对点集”.
②M={(x,y)|y=log2x},(x>0),
取(1,0),则不存在点(x2 , log2x2)(x2>0),满足1×x2+0=0,
因此集合M不是“垂直对点集”;
对于③M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,
据指数函数的图象和性质可知,
在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,
即一定存在点B,使得OB⊥OA成立,
故M={(x,y)|y=2x﹣2}是“垂直对点集”.
对于④M={(x,y)|y=sinx+1},在图象上任取一点A,
连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,
因此直线OB总会与y=sinx+1的图象相交.
所以M={(x,y)|y=sinx+1}是“垂直对点集”,故④符合;
综上可得:只有①③④是“垂直对点集”.
故选:C
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016年中国(云南赛区)三对三篮球联赛在昆明市体育局的大力支持下,圆满顺利结束.组织方统计了来自 球队的男子的平均身高与本次比赛的平均得分,如下表所示:

球队

平均身高 (单位:

170

174

176

181

179

平均得分 (单位:分)

62

64

66

70

68


(1)根据表中数据,求 关于 的线性回归方程(系数精确到 );
(2)若 队平均身高为 ,根据(1)中所求得的回归方程,预测 队的平均得分.(精确到个位) 注:回归方程 中斜率和截距最小二乘估计公式分别为
.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A1 , A2为椭圆 =1的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1 , A2的三点,直线QA1 , QA2 , OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(

A.5
B.3+
C.9
D.14

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解市民在购买食物时看营养说明与性别的关系,现在社会上随机询问了100名市民,得到如下2×2列联表:
(1)是否有95%的把握认为:“性别与读营养说明有关系”,并说明理由;
(2)把频率当概率,若从社会上的男性市民中随机抽取3位,记这3位中读营养说明的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).

男性

女性

总计

读营养说明

40

20

60

不读营养说明

20

20

40

总计

60

40

100

参考公式和数据:

P(K2≥k0

0.10

0.050

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数F(x)= ,(a为实数).
(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;
(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1 , F2分别是椭圆C: =1(a>b>0)的左、右焦点,且焦距为2 ,动弦AB平行于x轴,且|F1A|+|F1B|=4.

(1)求椭圆C的方程;
(2)若点P是椭圆C上异于点 、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2 , 求证:k1k2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合Ma={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.
(1)若f(x)=2x﹣x2 , 试判断f(x)是否为M1中的元素,并说明理由;
(2)若 ,且g(x)∈Ma , 求a的取值范围;
(3)若 (k∈R),且h(x)∈M2 , 求h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C的中心为原点O,F(﹣2 ,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为(
A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,AB=AC=PB=PC=10,PA=8,BC=12,点M在平面PBC内,且AM=7,设异面直线AM与BC所成角为α,则cosα的最大值为(

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案