精英家教网 > 高中数学 > 题目详情
若O为△ABC所在平面内一点,且满足(
OB
-
OC
)(
OB
+
OC
-2
OA
)=0
,则△ABC的形状为
 
分析:利用向量的运算法则将等式中的向量
OA
OB
OC
用三角形的各边对应的向量表示,得到边的关系,得出三角形的形状.
解答:解:∵(
OB
-
OC
)•(
OB
+
OC
-2
OA
)

=(
OB
-
OC
)[(
OB
-
OA
)+(
OC
-
OA
)]

=(
OB
-
OC
)•(
AB
+
AC
)=
CB
•(
AB
+
AC
)

=(
AB
-
AC
)•(
AB
+
AC
)=|
AB
|
2
-|
AC
|
2
=0,
|
AB
|=|
AC
|

∴△ABC为等腰三角形.
故答案为:等腰三角形
点评:此题考查了三角形形状的判断,涉及的知识有:平面向量加减的平行四边形法则,平面向量的数量积运算,平面向量模的运算,以及等腰三角形的判定方法,熟练掌握平面向量的数量积运算法则是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,
OP
=
OA
+
OB
+
OC
,且
BP
BC
=8,则边AC上的高h的最大值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源:江苏省南通市通州区2012届高三4月查漏补缺专项检测数学试题 题型:022

已知△ABC中,∠B=60°,O为△ABC的外心,若点P在△ABC所在的平面上,,且·=8,则边AC上的高h的最大值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,数学公式=数学公式+数学公式+数学公式,且数学公式数学公式=8,则边AC上的高h的最大值为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省常州中学高三最后冲刺综合练习数学试卷6(文科)(解析版) 题型:解答题

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,=++,且=8,则边AC上的高h的最大值为   

查看答案和解析>>

同步练习册答案