精英家教网 > 高中数学 > 题目详情
7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,则球O的表面积等于(  )
A.16πB.20πC.24πD.36π

分析 求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.

解答 解:令△PAD所在圆的圆心为O1,则
因为PA=PD=2,∠APD=120°,所以AD=2$\sqrt{3}$,所以圆O1的半径r=$\frac{1}{2}×\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
因为平面PAD⊥底面ABCD,
所以OO1=$\frac{1}{2}$AB=1,
所以球O的半径R=$\sqrt{4+1}$=$\sqrt{5}$,
所以球O的表面积=4πR2=20π.
故选:B.

点评 本题考查球O的表面积,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知点P(2,1),Q(-2,-2),过点(0,5)的直线l与线段PQ有公共点,则直线l的斜率k的取值范围是k≤-2或k≥$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}各项均为正数,且a1,$\frac{1}{2}$a3,a2成等差数列,求$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题正确的个数是(  )
①“在三角形ABC中,若sinA>sinB,则A>B”的否命题是真命题;
②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
③存在实数x0,使x02+x0+1<0;
④命题“若m>1,则x2-2x+m=0有实根”的逆否命题是真命题.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$y={log_{\frac{1}{4}}}({{x^2}-4x-5})$的单调增区间是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点(-3,-1)在直线3x-2y-a=0的上方,则a的取值范围为(  )
A.a>-7B.a≥-7C.a<-7D.a≤-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知幂函数y=f(x)的图象过(9,3)点,则$f(\frac{1}{3})$=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了对某研究性课题进行研究,用分层抽样方法从某校高中各年级中,抽取若干名学生组成研究小组,有关数据见表(单位:人)     
(1)求x,y;
(2)若从高一、高二抽取的人中选2人作专题发言,求这2人都来自高一的概率.
年 级相关人数抽取人数
高一54x
高二362
高三18y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①有两个侧面是矩形的棱柱是直棱柱
②侧面都是等腰三角形的棱锥是正棱锥
③侧面都是矩形的直四棱柱是长方体
④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱
其中不正确的命题为①②③.

查看答案和解析>>

同步练习册答案