精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

【答案】(1) 的极坐标方程为.曲线的直角坐标方程为. (2)

【解析】

(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点的极坐标分别为

分别代入曲线极坐标方程得:,之后进行化一,可得到最值,此时,可求解.

(1)由

代入得:

,故曲线的极坐标方程为.

代入得,故曲线的直角坐标方程为.

(2)设点的极坐标分别为

分别代入曲线极坐标方程得:

,其

为锐角,且满足,当时,取最大值,

此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.若直线ab与平面所成角都是30°,则这两条直线平行

B.若直线a与平面、平面所成角相等,则

C.若平面内不共线三点到平面的距离相等,则

D.已知二面角的平面角为120°Pl上一定点,则一定存在过点P的平面,使所成锐二面角都为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,把函数的图象向右平移个单位,再把图象上各点的横坐标缩小到原来的一半,纵坐标不变,得到函数的图象,当时,方程恰有两个不同的实根,则实数的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

60

已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.

1)请将上面的列联表补充完整;

2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆轴的一个交点.已知椭圆与直线相交于两点,延长与椭圆交于点.

1)求椭圆的方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面.

(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)当直线与平面所成的角为45°时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,的中点,.

1)求证:平面

2)若,点在侧棱上,且,二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断函数的单调性;

2)若恒成立,求的取值范围;

3)已知,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,对任意,点都在函数 的图象上.

1)求数列的通项公式;

2)若数列,求数列的前项和

3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案