【题目】已知椭圆:()的左右顶点分别为,,点在椭圆上,且的面积为.
(1)求椭圆的方程;
(2)设直线不经过点且与椭圆交于,两点,若直线与直线的斜率之积为,证明:直线过顶点.
【答案】(1) .
(2)见解析.
【解析】分析:第一问利用三角形的面积求得所满足的关系,结合点在椭圆上,以及椭圆中的关系,求得其值,得到椭圆的方程,第二问涉及直线与椭圆相交,需要设出直线的方程,先去验证直线的斜率是存在的,设出方程之后,与椭圆方程联立,消元,利用韦达定理得到其两根和与两根积,利用题中所给的斜率的关系,得出等量关系式,从而求得直线过定点.
详解:(1)由题意可设椭圆的半焦距为,
由题意得:
所以
所以椭圆的方程为:
(2)当直线的斜率不存在时,可设其方程为且),
不妨设,且
故把代换化简得:,不合题意
设直线的方程为,,
联立
,
由,是上方程的两个根可知:
由,
化简整理得:
即
故或(舍去,因为此时直线经过点)
把代入得
所以直线方程为(),恒过点
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程是,点是曲线上的动点.点满足 (为极点).设点的轨迹为曲线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,已知直线的参数方程是,(为参数).
(1)求曲线的直角坐标方程与直线的普通方程;
(2)设直线交两坐标轴于,两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮,其中P是弧TN上一点.设,长方形的面积为S平方米.
(1)求关于的函数解析式;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元,销售价(元)与日均销售量(桶)的关系如下表,为了收费方便,经营部将销售价定为整数,并保持经营部每天盈利.
6 | 7 | 8 | 9 | 10 | 11 | 12 | … | |
480 | 440 | 400 | 360 | 320 | 280 | 240 | … |
(1)写出的值,并解释其实际意义;
(2)求表达式,并求其定义域;
(3)求经营部利润表达式,请问经营部怎样定价才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知曲线的参数方程为(为参数)。曲线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线,的极坐标方程;
(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的值为0,则开始输入的值为( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com