【题目】已知θ∈( , ),若存在实数x,y同时满足 = , + = ,则tanθ的值为 .
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′﹣ABCM.
(1)求证:AM⊥D′F;
(2)若∠D′EF= ,直线D'F与平面ABCM所成角的大小为 ,求直线AD′与平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润(万元)的概率分布列如下表所示:
且的期望;若投资乙项目一年后可获得的利润(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为和.若乙项目产品价格一年内调整次数(次数)与的关系如下表所示:
(1)求的值;
(2)求的分布列;
(3)若,则选择投资乙项目,求此时的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2 , n]上的最大值为4,则n﹣m=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据3至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,则f(x)是( )
A.周期为π,图象关于点 对称的函数
B.最大值为2,图象关于点 对称的函数
C.周期为2π,图象关于点 对称的函数
D.最大值为2,图象关于直线 对称的函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只小蜜蜂在一个棱长为3的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于1,则就有可能撞到玻璃上面不安全,若始终保持与正方体玻璃容器6个表面的距离均大于1,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x﹣a|+2x(a∈R)
(1)当a=4时,解不等式f(x)≥8;
(2)当a∈[0,4]时,求f(x)在区间[3,4]上的最小值;
(3)若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有3个不相等的实数根,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com