精英家教网 > 高中数学 > 题目详情

【题目】椭圆的左,右焦应分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.

1)求椭圆的方程;

2)已知直线与椭圆切于点,直线平行于,与椭圆交于不同的两点,且与直线交于点.证明:存在常数,使得,并求的值;

3)点是椭圆上除长轴端点外的任一点,连接,设后的角平分线的长轴于点,求的取值范围.

【答案】(1)(2)证明见解析,(3)

【解析】

1)根据题意直接计算得到答案.

2)设方程,联立方程,利用韦达定理得到

计算,代入化简得到答案.

3)设其中,将向量坐标代入并化简得,计算得到答案.

1)由所以椭圆的方程为

2方程为

,则

即存在满足条件

3)由题意可知:

其中,将向量坐标代入并化简得:

,因为,所以

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】能够使得命题“曲线上存在四个点满足四边形是正方形”为真命题的一个实数的值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:对于每位销售人员,均以10万元为基数,若销售利润没超出这个基数,则可获得销售利润的5%的奖金;若销售利润超出这个基数(超出的部分是a万元),则可获得万元的奖金.记某位销售人员获得的奖金为y(单位:万元),其销售利润为x(单位:万元).

(1)写出这位销售人员获得的奖金y与其销售利润x之间的函数关系式;

(2)如果这位销售人员获得了万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高二年级的第二学期,因某学科的任课教师王老师调动工作,于是更换了另一名教师赵老师继任.第二学期结束后从全学年的该门课的学生考试成绩中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示如下:

学校秉持均衡发展、素质教育的办学理念,对教师的教学成绩实行绩效考核,绩效考核方案规定:每个学期的学生成绩中与其中位数相差在范围内(含)的为合格,此时相应的给教师赋分为1分;与中位数之差大于10的为优秀,此时相应的给教师赋分为2分;与中位数之差小于-10的为不合格,此时相应的给教师赋分为-1分.

(Ⅰ)问王老师和赵老师的教学绩效考核成绩的期望值哪个大?

(Ⅱ)是否有的把握认为“学生成绩取得优秀与更换老师有关”.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,把函数的图象向右平移个单位,再把图象上各点的横坐标缩小到原来的一半,纵坐标不变,得到函数的图象,当时,方程恰有两个不同的实根,则实数的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,的中点.

1)平面平面

2)在线段上是否存在点,使二面角的大小为?若存在,求出的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆轴的一个交点.已知椭圆与直线相交于两点,延长与椭圆交于点.

1)求椭圆的方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案