精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.

(1)证明:Q为BB1的中点;
(2)若AA1=4,CD=2,梯形ABCD的面积为6,∠ADC=60°,求平面α与底面ABCD所成锐二面角的大小.

【答案】
(1)证明:Ⅰ∵BQ∥AA1,BC∥AD,

BC∩BQ=B,AD∩AA1=A,

∴平面QBC∥平面A1AD,

∴平面A1CD与这两个平面的交线相互平行,

即QC∥A1D.

∴△QBC与△A1AD的对应边相互平行,

∴△QBC∽△A1AD,

∴Q为BB1的中点.


(2)解法一:如图1所示,在△ADC中,作AE⊥DC,垂足为E,连接A1E.

又DE⊥AA1,且AA1∩AE=A,

所以DE⊥平面AEA1,所以DE⊥A1E.

所以∠AEA1为平面α与底面ABCD所成二面角的平面角.

因为BC∥AD,AD=2BC,所以SADC=2SBCA

又因为梯形ABCD的面积为6,DC=2,

所以SADC=4,AE=4.

于是tan∠AEA1= =1,∠AEA1=

故平面α与底面ABCD所成二面角的大小为

解法二:如图2所示,

以D为原点,DA,DD1分别为x轴和z轴正方向建立空间直角坐标系.

设∠CDA=θ,BC=a,则AD=2a.

因为S四边形ABCD= 2sin60°=6,

所以a=

从而可得C(1, ,0),A1 ,0,4),

所以DC=(1, ,0), =( ,0,4).

设平面A1DC的法向量 =(x,y,1),

所以 =(﹣ ,1).

又因为平面ABCD的法向量 =(0,0,1),

所以cos< >= =

故平面α与底面ABCD所成二面角的大小为


【解析】(1)由已知得平面QBC∥平面A1AD,从而QC∥A1D,由此能证明Q为BB1的中点.(2)法一:在△ADC中,作AE⊥DC,垂足为E,连接A1E,∠AEA1为平面α与底面ABCD所成二面角的平面角,由此求出平面α与底面ABCD所成二面角的大小.(3)法二:以D为原点,DA,DD1分别为x轴和z轴正方向建立空间直角坐标系,由此利用向量法能求出平面α与底面ABCD所成二面角的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.

(1)求直线BE与平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G:=1(a>b>0)的离心率为,经过左焦点F1(-1,0)的直线l与椭圆G相交于A,B两点,y轴相交于点C,且点C在线段AB.

(1)求椭圆G的方程;

(2)|AF1|=|CB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+bex , (b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知圆C的圆心C( ),半径r=
(1)求圆C的极坐标方程;
(2)若α∈[0, ),直线l的参数方程为 (t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:

(1)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(2)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).

(1)若m=2,且p∧q为真,求实数x的取值范围;

(2)若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,双曲线 =1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为

查看答案和解析>>

同步练习册答案