12£®Ö±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=1£®Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®
£¨1£©Çó|AB|µÄ³¤£»     
£¨2£©ÈôPµãµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬ÇóABÖеãMµ½PµÄ¾àÀ룮

·ÖÎö £¨1£©¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦ÈÇó³öÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£¬´Ó¶øÇó³öABµÄ³¤£¬£¨2£©½«P´øÈëÖ±Ïßl£¬Çó³öPMµÄ³¤¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=1£¬
¡à¦Ñ2£¨cos2¦È-sin2¦È£©=1£¬
¼´x2-y2=1£¬
¶øÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
´øÈëx2-y2=1£¬
µÃ£ºt2-2t-4=0£¬
ÉèA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðÊÇt1£¬t2£¬
Ôòt1+t2=2£¬t1t2=-4£¬
Ôò|AB|=|t1-t2|=$\sqrt{{{£¨t}_{1}{+t}_{2}£©}^{2}-{{4t}_{1}t}_{2}}$=2$\sqrt{5}$£»
£¨2£©PµãµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬Ö±½Ç×ø±êÊÇ£¨0£¬1£©£¬
P£¨0£¬1£©ÔÚÖ±ÏßlÉÏ£¬ABµÄÖеãM¶ÔÓ¦µÄ²ÎÊýΪ£º
$\frac{{{t}_{1}+t}_{2}}{2}$=1£¬¡à|PM|=1£®

µãÆÀ ±¾Ì⿼²éÁËÖ±Ïß·½³ÌÒÔ¼°ÒÔ¼°¼«×ø±ê·½³Ì£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼF1¡¢F2ÊÇÍÖÔ²C1£º$\frac{{x}^{2}}{4}$+y2=1ÓëË«ÇúÏßC2µÄ¹«¹²½¹µã£¬A¡¢B·Ö±ðÊÇC1¡¢C2ÔÚµÚ¶þ¡¢ËÄÏóÏ޵Ĺ«¹²µã£¬ÈôËıßÐÎAF1BF2Ϊ¾ØÐΣ¬ÔòC2µÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{6}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=x3+x-1£¬ÔòÔÚÏÂÁÐÇø¼äÖУ¬f£¨x£©Ò»¶¨ÓÐÁãµãµÄÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬0£©B£®£¨0£¬1£©C£®£¨-2£¬-1£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑ֪˫ÇúÏßC¾­¹ýµã£¨1£¬1£©£¬Ëü½¥½üÏß·½³ÌΪ$y=¡À\sqrt{3}x$£¬ÇóË«ÇúÏßCµÄ±ê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈôÔ²C1£ºx2+y2-2x=0ÓëÔ²C2£º£¨x+1£©2+£¨y-2£©2=r2£¨r£¾0£©ÏàÇУ¬ÔòrµÈÓÚ2$\sqrt{2}$-1»ò2$\sqrt{2}$+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÕý·½ÌåÖÐABCD-A1B1C1D1£¬ÈôGµãÊÇ¡÷BA1DµÄÖØÐÄ£¬ÇÒ$\overrightarrow{AG}$=x$\overrightarrow{AD}$+y$\overrightarrow{AB}$+z$\overrightarrow{C{C}_{1}}$£¬Ôòx+y+zµÄֵΪ£¨¡¡¡¡£©
A£®3B£®1C£®-1D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDΪ¾ØÐΣ¬Æ½ÃæABEF¡ÍƽÃæABCD£¬EF¡ÎAB£¬¡ÏBAF=90¡ã£¬AD=2£¬AB=AF=2EF=l£¬µãPÔÚÀâDFÉÏ£®
£¨¢ñ£©ÈôPΪDFµÄÖе㣬ÇóÖ¤£ºBF¡ÎƽÃæACP£»
£¨¢ò£©ÇóÈýÀâ׶P-BECµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁÐÃüÌâΪÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ù?x¡Ê{x|xÊÇÎÞÀíÊý}£¬x2ÊÇÎÞÀíÊý£»
¢ÚÃüÌâ¡°?x0¡ÊR£¬${x}_{0}^{2}$+1£¾3x0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+1¡Ü3x¡±£»
¢ÛÃüÌâ¡°Èôx2+y2=0£¬x¡ÊR£¬y¡ÊR£¬Ôòx=y=0¡±µÄÄæ·ñÃüÌâΪÕæÃüÌ⣻
¢Ü£¨2e-x£©¡ä=2e-x£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¹ýÍÖÔ²CµÄÉ϶¥µãÓëÓÒ¶¥µãµÄÖ±ÏßL£¬ÓëÔ²x2+y2=$\frac{12}{7}$ÏàÇУ¬ÇÒÍÖÔ²CµÄÓÒ½¹µãÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖغϣ®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©¹ýµãO×÷Á½Ìõ»¥Ïà´¹Ö±µÄÉäÏßÓëÍÖÔ²C·Ö±ð½»ÓÚA£¬BÁ½µã£¨ÆäÖÐOΪ×ø±êÔ­µã£©£¬Çó¡÷OABÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸