精英家教网 > 高中数学 > 题目详情

【题目】设定义在区间上的函数的图象为 ,且为图象上的任意一点, 为坐标原点,当实数满足时,记向量,若恒成立,则称函数在区间上可在标准下线性近似,其中是一个确定的正数.

(1)设函数在区间上可在标准下线性近似,求的取值范围;

(2)已知函数的反函数为,函数,( ),点,记直线的斜率为,若,问:是否存在,使成立?若存在,求的取值范围;若不存在,请说明理由.

【答案】(1);(2)见解析.

【解析】试题分析:

(1)利用标准下线性近似的定义得到恒成立问题,结合题意求解 的取值范围即可;

(2)利用题意构造函数 ,结合函数零点存在定理证得 是存在的,然后结合导函数与原函数的关系求解取值范围即可.

试题解析:

(1)由

的横坐标相同。

对于区间上的函数, ,

则有

,再由恒成立,可得.故k的取值范围为

(2)由题意知, .则

.则

当t<0时, , 单调递减;当t>0时, , 单调递增.

故当t≠0时, 0,即

从而

所以.

由零点存在性定理可得:存在,使得

,所以单调递增,故存在唯一的,使得.

.故当且仅当时,

综上所述,存在,使成立,且的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知P为△ABC内一点,且满足 ,记△ABP,△BCP,△ACP的面积依次为S1 , S2 , S3 , 则S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)在ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.

(1)求角B的大小; (2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

(1)设过点的直线与曲线相切于点,求的值;

(2)函数的的导函数为,若上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在轴上的椭圆的中心是原点,离心率为双曲线离心率的一半,直线被椭圆截得的线段长为.直线 轴交于点,与椭圆交于两个相异点,且.

(1)求椭圆的方程;

(2)是否存在实数,使?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,且a1 , a4 , a13成等比数列,数列{ }是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn , 若不等式 ≤λ3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x|x﹣a|(其中a∈R).
(1)当a=1时,求函数f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值为﹣1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)通过()中的方程,求出y关于x的回归方程;

(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

同步练习册答案