【题目】在平面直角坐标系中,抛物线:,直线与交于,两点,.
(1)求的方程;
(2)斜率为()的直线过线段的中点,与交于两点,直线分别交直线于两点,求的最大值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设动点在圆上,动线段的中点的轨迹为,与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.
(1)若曲线参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程;
(2)若曲线参数方程为:(为参数),,且曲线与曲线交点分别为,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,焦距为,点为椭圆上一点,,的面积为.
(1)求椭圆的标准方程;
(2)设点为椭圆的上顶点,过椭圆内一点的直线交椭圆于两点,若与的面积比为,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形中,为的中点,,,,现在沿将折起使点到点P处,得到三棱锥,且平面平面.
(1)棱上是否存在一点,使得平面?请说明你的结论;
(2)求证:平面;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,锐角的顶点为坐标原点,始边为轴的正半轴,终边与单位圆的交点分别为.已知点的横坐标为,点的纵坐标为.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com