【题目】已知椭圆的焦距为,且,圆与轴交于点,,为椭圆上的动点,,面积最大值为.
(1)求圆与椭圆的方程;
(2)圆的切线交椭圆于点,,求的取值范围.
【答案】(1)圆的方程为,椭圆的方程为.;(2).
【解析】分析:(1)由题意结合几何关系得到关于a,b,c的方程组,求解方程组可得,,.则圆的方程为,椭圆的方程为.
(2)①当直线的斜率不存在时,计算可得.
②当直线的斜率存在时,设直线的方程为利用圆心到直线的距离等于半径可得,联立直线与椭圆方程可得,由弦长公式有.令,换元后结合二次函数的性质可得.则的取值范围是.
详解:(1)因为,所以.①
因为,所以点为椭圆的焦点,所以.
设,则,所以.
当时,,②
由①,②解得,所以,.
所以圆的方程为,椭圆的方程为.
(2)①当直线的斜率不存在时,不妨取直线的方程为,解得.
②当直线的斜率存在时,设直线的方程为.
因为直线与圆相切,所以,即,
联立,消去可得,
.
=
=.
令,则,所以=,
所以=,所以.
综上,的取值范围是.
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.
若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )
A. 作品 B. 作品 C. 作品 D. 作品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆+=1(a>b>0)上的点P到左,右两焦点F1,F2的距离之和为2,离心率为.
(1)求椭圆的标准方程;
(2)过右焦点F2的直线l交椭圆于A,B两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com