精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

【答案】(1)圆的方程为,椭圆的方程为.;(2).

【解析】分析:(1)由题意结合几何关系得到关于a,b,c的方程组,求解方程组可得.则圆的方程为,椭圆的方程为.

(2)①当直线的斜率不存在时,计算可得.

②当直线的斜率存在时,设直线的方程为利用圆心到直线的距离等于半径可得联立直线与椭圆方程可得由弦长公式有.换元后结合二次函数的性质可得.的取值范围是.

详解:(1)因为,所以.

因为,所以点为椭圆的焦点,所以.

,则,所以.

时,

由①②解得,所以.

所以圆的方程为,椭圆的方程为.

(2)①当直线的斜率不存在时,不妨取直线的方程为,解得.

②当直线的斜率存在时,设直线的方程为.

因为直线与圆相切,所以,即

联立,消去可得

.

=

=.

,则,所以=

所以=,所以.

综上,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,和直线相切,且圆心在直线上.

(1)求圆的方程;

(2)已知直线经过原点,并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面.

(1)证明:平面

(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“作品获得一等奖”; 乙说:“作品获得一等奖”;

丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处的切线方程为

(1) 求的值;

(2) 证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体中,分别是的中点,下面四个结论:

//平面

平面

③平面平面

④平面平面

其中正确结论的序号是______________.

查看答案和解析>>

同步练习册答案