【题目】已知数列{an}满足a1=0,an+1=an+2 +1
(1)求证数列{ }是等差数列,并求出an的通项公式;
(2)若bn= ,求数列{b}的前n项的和Tn .
科目:高中数学 来源: 题型:
【题目】设顶点在原点,焦点在轴上的拋物线过点,过作抛物线的动弦, ,并设它们的斜率分别为, .
(Ⅰ)求拋物线的方程;
(Ⅱ)若,求证:直线的斜率为定值,并求出其值;
(III)若,求证:直线恒过定点,并求出其坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过做直线交椭圆于两点,使,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线 的极坐标方程是 ,以极点为原点 ,极轴为 轴正半轴(两坐标系取相同的单位长度)的直角坐标系 中,曲线 的参数方程为: ( 为参数).
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)将曲线 经过伸缩变换 后得到曲线 ,若 分别是曲线 和曲线 上的动点,求 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C: + =1(a>b>0)的离心率是 ,且过点( , ).设点A1 , B1分别是椭圆的右顶点和上顶点,如图所示过 点A1 , B1引椭圆C的两条弦A1E、B1F.
(1)求椭圆C的方程;
(2)若直线A1E与B1F的斜率是互为相反数.
①求直线EF的斜率k0②设直线EF的方程为y=k0x+b(﹣1≤b≤1)设△A1EF、△B1EF的面积分别为S1和S2 , 求S1+S2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品生产厂家生产一种产品,每生产这种产品 (百台),其总成本为万元,其中固定成本为42万元,且每生产1百台的生产成本为15万元总成本固定成本生产成本销售收入万元满足,假定该产品产销平衡即生产的产品都能卖掉,根据上述条件,完成下列问题:
写出总利润函数的解析式利润销售收入总成本;
要使工厂有盈利,求产量的范围;
工厂生产多少台产品时,可使盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2) 为椭圆上任意一点,若,求的最大值和最小值.
(3)求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com